15+ лучших курсов аналитиков данных в Москве в 2024 году. Платные и бесплатные. Рейтинг, сравнение и стоимость обучения.

Стоимость: цену уточняйте на сайте.
  • Обучение на практике SQL, Python, Power BI
  • Преподаватели с опытом работы от 10 лет
  • Бонусный курс по Power Point для всех студентов
  • Занятия онлайн в удобное время.

Кому подойдёт этот курс:

  • Студенты технических вузов
    Узнаете, как проводить исследования, анализировать данные и делать наглядные отчёты. В короткие сроки получите специализацию и сможете начать карьеру в аналитике на позиции Junior.
  • Руководители и владельцы бизнеса
    Взглянете по-новому на свой продукт, изучите его сильные и слабые стороны. Узнаете, как делать прогнозы для бизнеса, развивать продукт и решать текущие проблемы на основе данных аналитики.
  • Разработчики, которые хотят сменить профиль
    Поймёте, как применить свои знания в программировании для решения бизнес-задач. Изучите инструменты для анализа, сборки и презентации данных заказчику — и станете более востребованным специалистом.
  • Бизнес-аналитикам
    Подтянете знания аналитики, изучите основы программирования на Python. Сможете работать с базами данных и Power BI, создавать эффектные презентации. Расширите компетенции и станете лучше решать текущие задачи.

Чему вы научитесь:

  1. Проводить исследования и делать точные выводы
    Изучите математическую основу анализа, научитесь работать с массивами данных и находить закономерности в цифрах.
  2. Использовать программирование в аналитике
    Освоите основы программирования на Python для решения базовых бизнес-задач. Научитесь собирать базы данных на языке SQL и управлять ими.
  3. Строить гипотезы и оценивать перспективы бизнес-решений
    Узнаете, какие метрики эффективности использует бизнес. Поймёте, как их собирать, читать, строить прогнозы и находить рабочие идеи.
  4. Работать с сервисами аналитики и дашбордами
    Научитесь работать с Яндекс.Метрикой и Google Analytics и собирать данные в одно окно для быстрого доступа к отчёту.
  5. Делать развёрнутые аналитические отчёты
    Поймёте, как пользоваться инструментами для визуализации данных, таблицами Google и Excel — и формировать отчёты для клиентов.
  6. Работать с заказчиками аналитики
    Научитесь обрабатывать различные типы аналитических запросов от бизнеса и презентовать результаты своей работы убедительно и понятно для коллег.

Программа

Вас ждут онлайн-лекции и практические задания с разным уровнем сложности. Этих знаний хватит, чтобы устроиться в компанию на junior-позицию.
45 тематических модулей, 230 онлайн-уроков

Аналитик данных с нуля

  1. Часть 1. Введение. Excel, Google Таблицы
  • Общая информация о курсе
  • Источники данных и инструменты для анализа
  • Введение. Интерфейс Excel. Книги и листы
  • Анализ таблиц. Печать таблиц
  • Сводные таблицы
  • Вычисления и формулы. Умные таблицы
  • Функции подсчёта и суммирования. Статистические функции. Функции округления
  • Логические функции
  • Основы, интерфейс Google Таблиц
  • Сводные таблицы: основы
  1. Часть 2. Python, библиотеки NumPy и Pandas
  • Введение в Python
  • Основы языка
  • Операторы, выражения
  • Условный оператор if: ветвления
  • Условный оператор if: продолжение
  • Цикл while
  • For: циклы со счётчиком. Часть 1
  • For: циклы со счётчиком. Часть 2
  • Цикл for: работа со строками
  • Вложенные циклы
  • Цикл for: продолжение работы со списками
  • Функции
  • Float
  • Установка и настройка IDE
  • Базовые коллекции: списки
  • Методы для работы со списками
  • Представление списков
  • Библиотека NumPy. Часть 1
  • Библиотека NumPy. Часть 2
  • Библиотека Pandas. Часть 1
  • Библиотека Pandas. Часть 2

Часть 3. SQL, чтение и запись данных, Power BI

  • Основы SQL
  • Чтение и запись данных. Часть 1
  • Чтение и запись данных. Часть 2
  • Введение в статистику
  • Знакомство с Big Data
  • Основные метрики и системы аналитики (Я.Метрика и Google Analytics)
  • Загрузка данных в Power BI
  • Соединение данных из разных таблиц и ресурсов

Power Point (бонусный курс)

  1. Интерфейс PowerPoint. Создание и редактирование слайдов
  2. Работа со стилем презентации: единый стиль, цвет и шрифт, форматирование текста
  3. Работа с фигурами, таблицами и изображениями
  4. Расширенные возможности редактирования и дизайна
  5. Печать, презентация и публикация
  6. Keynote и PowerPoint

Дипломный проект

  1. Составите модель распространения пандемии
    Выявите людей в зоне риска, учтёте их пол, возраст, перемещение по городу. Построите наглядные графики и таблицы для анализа.

Диплом Skillbox
Подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.

Стоимость: 109 500 ₽ или рассрочка на 24 месяца — 4 562 ₽ / мес
Курс поможет вам не только с нуля овладеть всеми важными для аналитика данных навыками, но и научит мыслить абстрактно, видеть за метриками и показателями смысл, находить взаимосвязи и строить гипотезы.

По промокоду ROMANSEMENTSOV  дополнительная скидка 5% на все онлайн-курсы, кроме направлений «MBA», «Саморазвитие и хобби», «Высшее образование» и курс «Директор по интернет маркетингу». Скидка действует от текущей цены и суммируется с действующими скидками на сайте Нетологии. Срок действия: 29.06.22 — 31.08.22.

Кому будет полезен этот курс:
  • Всем, кто хочет работать с данными Курс даёт техническую базу и навыки использования инструментов для работы с данными
  • Начинающим аналитикам Вы получите инструменты для перехода на уровень middle и сможете работать над более интересными задачами
  • Специалистам из смежных сфер Маркетологов, программистов, продактов и проджектов ждёт апгрейд навыков в аналитике и новая траектория развития карьеры.
Чему вы научитесь на курсе:
  1. Работать с сырыми данными Изучите полный цикл работы с данными: от получения из разных источников с помощью SQL до их загрузки и обработки средствами Python.
  2. Приносить пользу бизнесу Сможете собирать и обрабатывать запросы на аналитику, научитесь предоставлять метрики в понятном и наглядном виде, определять точку приложения усилий.
  3. Работать с Big Data Освоите актуальные инструменты анализа данных и получите явное конкурентное преимущество — крупнейшие компании работают с большими данными.
  4. Проверять гипотезы Полученные навыки позволят брать в работу сложные задачи. Сможете приоритизировать гипотезы и подбирать наиболее эффективные инструменты для их проверки.
  5. Анализировать данные Узнаете, как находить инсайты в данных и сможете предлагать бизнесу оптимальные сценарии роста и увеличения капитала.
  6. Организовывать свою работу Ставить цели и подводить итоги, поддерживать мотивацию и эффективно использовать для обучения рабочую тетрадь.
Программа курса:
  1. Аналитическое мышление Научитесь думать, как аналитик и формулировать гипотезы для проверки. Поймёте, что аналитика строится вокруг данных. Познакомитесь с базовым инструментом аналитика и сможете проводить в нём простой анализ данных.
  • Что такое аналитическое мышление
  • Введение в Google-таблицы
  • Продвинутые Google-таблицы
  • Основы статистики
  • Откуда берутся данные
  • Продвинутая визуализация данных
  • Python как инструмент анализа данных
  • Машинное обучение для жизни.
  1. SQL и получение данных Научитесь писать простые SQL-запросы, чтобы получать данные из базы данных — и не тратить время разработчиков или администраторов на поиск нужного разреза информации. Узнаете, как создавать новые таблицы сразу в базе без выгрузки данных в Excel — это позволит делать отчеты быстрее. Научитесь загружать данные в базу и самостоятельно развёртывать базу данных PostgreSQL, чтобы хранить данные в тех разрезах, которые нужны аналитикам. Сможете работать с разными форматами файлов: можно в одной базе создавать отчёты с данными с веб-счётчиков, из таблиц бухгалтерии и из управленческой отчётности.
  • Основы SQL
  • Углубление в SQL
  • Работа с PostgreSQL
  • Работа с MongoDB.
  1. Метрики, гипотезы, точки роста Вы научитесь работать в команде. Узнаете, кто является заказчиком аналитики в компании и как работать с разными типами заказчиков. Вы получите базовые знания об иерархии метрик, которые позволят вам говорить на одном языке с коллегами, выдвигать рабочие гипотезы и строить понятную отчётность.
  • Маркетинговые метрики и метрики продукта
  • Финансовые метрики
  • Иерархия метрик
  • Сбор требований и разработка отчётности
  • Формулирование гипотез. Поиск точек роста
  • Дизайн тестов, проведение и анализ. Построение простых моделей
  • Оптимизация отчётности.
  1. Аналитика больших данных Разберётесь в методах построения аналитики в компании. Научитесь переходить от мониторинга к прогнозированию, применяя простые скрипты python и pyspark, чтобы не тратить средства на внедрение сложных промышленных комплексов. Сможете определять, когда и каких данных не хватает, и собирать недостающие.
  • Что такое большие данные. Традиционные аналитические подходы
  • Машинные методы в помощь обработке данных
  • Ускорение обработки данных. Практика pandas
  • Мотивация и инструменты больших данных
  • NoSQL-подход к работе с большими данными
  • MapReduce
  • Практика PySpark
  • Культура сбора и источники данных
  • Организация команды для работы с данными.
  1. Python для анализа данных Вы научитесь пользоваться базовыми инструментами и подходами в Python, чтобы начать работать с данными. Повторите основы линейной алгебры, теории множеств, методов математической оптимизации, описательной статистики, статистического анализа данных, а также научитесь реализовать это на языке Python.
  • Основы Python и Git (арифметика)
  • Базовые типы данных и циклы
  • Функции и классы
  • Продвинутые типы данных: массивы, множества, словари
  • Python для анализа данных: numpy и scipy
  • Python для анализа данных: pandas
  • Основные библиотеки для подключения к БД из Python
  • Инструменты matplotlib, seaborn для визуализации
  • Выбор способа визуализации под задачу.
  1. NumPy, pandas, MPL Получите представление о многомерных массивах numpy и их преимуществах перед традиционными массивами Python. Узнаете основные функции взаимодействия с numpy массивами. Познакомитесь с принципами broadcast’а. Сможете использовать pandas для работы с информацией в таблицах, объяснять операции над векторами и матрицами, работать с матрицами и векторами в python, создавать и работать с элементами массива разных размерностей в numpy, отображать данные в различных срезах и различными способами для их дальнейшего анализа.
  • Библиотека numpy. Вычислительные задачи
  • Библиотека pandas
  • Функции и работа с данными
  • Продвинутый pandas
  • Сложные расчётные поля, обзор основных групп функций
  • Библиотека Matplotlib & Seaborn. Визуализация данных.
  1. Статистика в Python Научитесь ориентироваться в статистических методах и их областях применения в решении реальных задач. Освоите основные понятия и точки применения статистики. Узнаете про основные распределения, освоите ЦПТ. Изучите дискретные и непрерывные распределения и получите основы статистических проверок гипотез.
  • Основы описательной статистики, виды распределений в Python
  • Центральная предельная теорема и статистический анализ данных в Python
  • Основные статистические тесты и проверка гипотез.
  1. Дипломный проект В рамках дипломного проекта вы примените полученные навыки на персональном проекте по анализу данных. Это может быть анализ данных по продажам, прогнозная аналитика влияния бизнес-действий на ключевые показатели эффективности или написание алгоритма распределения товарных запасов. Если у вас нет идей для своего проекта (или доступа к необходимым данным), мы предложим учебный кейс в интересной вам области на основе реального датасета других компаний. Дипломная работа выполняется самостоятельно под руководством экспертов курса и закрепляет весь спектр знаний и навыков, полученных на программе. Вы получаете готовый кейс для уверенного роста и перехода на новую должность.
Вашу квалификацию подтвердят документы установленного образца.
Стоимость: разная стоимость

Курсы:

  1. «Аналитик данных»
    Станьте аналитиком данных, прокачайтесь в продуктовой или маркетинговой аналитике и помогайте бизнесу принимать выгодные решения
    Длительность 10 мес
  2. «Аналитик данных»
    Научитесь собирать и организовывать данные— станьте аналитиком данных, чтобы помогать бизнесу работать эффективнее
    Длительность 6 мес
  3. «Продуктовая аналитика»
    Освойте продуктовую аналитику — тестируйте гипотезы, выстраивайте стратегию развития и принимайте эффективные бизнес-решения на основе данных
    Длительность 4 мес
  4. «Тренажёр Power BI»
    Научитесь работать в Power BI — анализируйте данные, создавайте визуальные отчеты и автоматизируйте свои задачи
    Длительность 3 мес
  5. «Python для анализа данных»
    Освойте Python для анализа данных — автоматизируйте рутинные задачи по аналитике, создавайте отчеты и обрабатывайте большие файлы за меньшее время
    Длительность 2 мес
  6. «Маркетолог-аналитик»
    Станьте маркетологом-аналитиком — научитесь анализировать рынок и свою рекламную активность, чтобы делать ее более эффективной
    Длительность 7 мес
  7. «SQL для анализа данных»
    Научитесь обрабатывать данные с помощью SQL с нуля, освойте навыки работы со сложными запросами и решайте аналитические задачи самостоятельно
    Длительность 1,8 мес
  8. «Мастер Google-таблиц»
    Научитесь работать с Google-таблицами — отслеживайте показатели бизнеса, автоматизируйте отчетность и аналитику, экономьте время
    Длительность 1 мес
  9. «Системный аналитик»
    Курс для системных аналитиков, готовых выйти на новый уровень в своей карьере.
    Длительность 6 мес.

Чем вы будете заниматься:

  • Создавать интерактивный дашборд с KPI для онлайн-школы
  • Анализировать метрики эффективности обучения на данных онлайн-школы
  • Проводить AB-тестирования с помощью техник Bootstrap.

Программа:

  1. Excel
  • Основы работы с Excel
  • Обработка данных
  • Агрегация данных
  • Основы Юнит-экономики в Excel
  • Работа с нестандартными данными
  • Настройка фильтров и визуализация
  • Сборка калькулятора юнит-экономики
  • Переход из Excel в Google Sheets
  • Воркшоп. Интерактивный отчет
  • Сложные прогнозы в Excel.
  1. SQL
  • Базовые запросы
  • Генерация новых признаков и очистка данных
  • Агрегатные функции
  • Объединение таблиц
  • Объединение таблиц. Часть 2
  • Подзапросы и WITH
  • Оконные функции
  • Создание, изменение и удаление данных в таблице. Создание индексов. Временные таблицы
  • Когортный анализ
  • Воркшоп: проводим аналитическое исследование и решаем бизнес-проблему с помощью SQL
  • Основы оптимизации.
  1. Power BI
  • Знакомство с Power BI и web-аналитикой
  • Воркшоп: Знакомство с курсовым проектом. Работа с заказчиком
  • Визуализация данных: основные принципы
  • Получение и предобработка данных
  • Введение в модели данных
  • Введение в DAX
  • Контекст вычисления и его модификация
  • Работа с датами
  • UX дизайн отчета
  • Power BI Service. Автоматическое обновление и права доступа
  • Воркшоп: Построение отчета. Формулировка выводов и рекомендаций для бизнеса.
  1. Python
  • Основы Python, переменные и типы данных
  • Работа в циклах со списками и словарями
  • Функции и библиотеки
  • Основы Pandas
  • Выбор и настройка визуализаций
  • Запросы к удаленным базам данных
  • Подключение к API.
  1. Статистика
  • Общее определение. Основы статистики
  • Шкалы и распределения данных
  • Виды статистических критериев
  • Виды близости
  • Воркшоп: непараметрические критерии, критерии согласия, бутстрап.
  1. Аналитика в продукте и маркетинге
  • Маркетинговая аналитика: воронка, конверсии, модели атрибуции.
  • Продуктовая аналитика: метрики продукта, конверсии, валидация продуктовых гипотез — А/В-тесты.
  • Планирование ресурсов, HR-планирование.
Стоимость: Рассрочка на 36 месяцев — от 3 589 ₽ / мес

Аналитик Big Data извлекает ценные данные из большого массива информации: отзывов, прогнозов, результатов исследований. Он помогает бизнесу принимать взвешенные решения: строить гипотезы, запускать продукты, улучшать процессы, планировать развитие.

Кому подойдет курс:

  • Новичкам
    Сможете стать специалистом по анализу больших данных, даже если никогда не работали в IT-сфере.
  • Начинающим аналитикам
    У вас будет всё для ускоренного карьерного роста: комплексные знания и опыт работы с продвинутыми инструментами, методологиями и стандартами.
  • Практикующим IT-специалистам
    Подскажем, как перейти в востребованное направление и зарабатывать больше.

Программа обучения:

Подготовительный блок

  1. Видеокурс: как учиться эффективно
    Расскажем, как спланировать обучение, чтобы сохранить интерес, получить максимум пользы и всё успеть.
  2. Основы языка Python
    Поможем освоить Python и решать на нём задачи. Вы научитесь работать с объектами, типами данных, циклами, функциями, модулями, библиотеками.

Фундамент анализа данных
Студенты научатся главному инструменту аналитика — языку SQL. Также изучат основы языка Python и базовые библиотеки Python для анализа данных (NumPy, Pandas, Matplotlib, Scikit-learn).

  1. Встреча студентов с деканом факультета
  2. Основы языка Python
    На курсе вы освоите объектно-ориентированное программирование, познакомитесь с нюансами установки интерпретатора для различных систем, выбора среды разработки и отладки кода.
  3. Рабочая станция
    Разберете базовые основы работы в Linux: основы работы в оболочке Linux, управление пользователями и правами файлов, работа с процессами и управление загрузкой и сервисами в Linux.
  4. Основы реляционных баз данных. MySQL
    Научитесь проектировать и работать с базами данных на самой популярной СУБД.
  5. Библиотеки Python для Data Science: NumPy, Matplotlib, Scikit-learn
    Освоите инструменты дата-сайентиста. Узнаете, как работают библиотеки для построения моделей машинного обучения, визуализации и работы с данными.

Сбор, обработка и хранение данных
Это основы Big Data. Студенты научатся собирать данные из различных источников. Также проработают процессы предобработки неструктурированных данных и их хранения в различных базах данных для дальнейшего анализа. На заключительном этапе познакомятся с популярным инструментом по работе с большими данными — Hadoop.

  1. Методы сбора и обработки данных из сети Интернет
    Основы компьютерных сетей, работа с HTTP, открытыми данными. Основы веба: HTML/CSS, JavaScript; принципы работы с RESTful и SOAP.
  2. Базы данных для аналитиков
    Изучите работу долговременных хранилищ, начнёте работать с MySQL и другими базами данных: MongoDB, Redis, Elasticsearch и ClickHouse.
  3. Big Data. Введение в экосистему Hadoop
    Поработаете с парадигмой MapReduce и файловой системой HDFS, начнёте управлять ресурсами кластеров и планированием заданий в YARN, внедрите потоковую обработку данных. Изучите NoSQL, принципы ETL и архитектуры Data Lake и Lambda Architecture.

Алгоритмы обработки и анализа данных. Совместно с компанией X5 Retail Group
Студенты начнут изучение теории вероятностей и математической статистики для понимания работы алгоритмов анализа данных. Также узнают базовые алгоритмы для решения основных задач анализа данных, научатся реализовать их с помощью Python и смогут применять их на практике в дальнейшем.

  1. Теория вероятностей и математическая статистика
    Научитесь проверять статистические гипотезы и проводить A/B-тестирование. Расскажем, как работать с корреляционным, дисперсионным и регрессионным анализом.
  2. Алгоритмы анализа данных
    Узнаете, как устроены алгоритмы на самом низком уровне — математики.

Системы машинного обучения. Рекомендательные системы
Студенты погрузятся в прикладное машинное обучение: решат несколько бизнес-кейсов с применением ML, а также подробно изучат популярный фреймворк для работы с BigData — Apache Spark. Курсовой проект будет включать разработку рекомендательной системы.

  1. Машинное обучение в бизнесе
    Вы познакомитесь с задачами, в которых машинное обучение помогает автоматизировать бизнес-процессы и улучшать финансовые показатели. Будут задачи по ретаргетингу, look-alike аудитории, uplift-моделированию. Также будут задачи по формулированию гипотез, презентации результатов, интеграции и АБ-тестированию ML-моделей.
  2. Фреймворк Apache Spark
    Владение базовыми навыками работы в Spark входит в стандартный набор инструментов по распределенной обработке больших данных. На курсе вы рассмотрите основы архитектуры Spark, принципы построения, оптимизации запросов, пакетной обработки данных с использованием Python API.
  3. Рекомендательные системы
    На курсе вы рассмотрите теорию и практику решения задач машинного обучения в трёх частях: введение в машинное обучение, типы обучений, обучение с учителем, обучение без учителя, типы задач под каждое из обучений, задачи классификации, анализ временных рядов и предикативные модели.

Аналитика Big Data для бизнеса
Студенты научатся решать задачи ML с отзывами клиентов, геоданными и соцсетями. Также освоят несколько задач бизнес-аналитика в современных BI-системах: построение витрин данных, прогнозирование, управление знаниями и отчетность.Также студенты познакомятся с real-time системой обработки и анализа больших данных на основе Kafka и Apache Streaming.

  1. Анализ данных в Power BI
    На примере Power BI освоите инструменты анализа и визуализации: от загрузки данных до создания полноценного дашборда и связей в модели. Познакомитесь с языком DAX: узнаете, что такое контекст вычислений, чем вычисляемые столбцы отличаются от мер, как использовать функции даты и времени.
  2. Потоковая обработка данных
    Поработаете с высоконагруженными системами и обработаете данные в реальном времени, напишете сервисы с использованием Spark Streaming.
  3. Финальный проект
    Сделаете проект с применением всех изученных технологий — индивидуально или в команде.

Курсы со свободной датой старта:

  • Подготовка к собеседованию аналитика Big Data
  • Введение в высшую математику
  • Алгоритмы и структуры данных на Python. Интерактивный курс
  • Видеокурс от Delivery Club
  • Язык R для анализа данных
  • Системы сбора логов
  • Видеокурс от X5 RETAIL GROUP.
  • A/B тестирование от основ до продвинутых подходов.

Вы получите диплом о профессиональной переподготовке.

В программе изучаются основы баз данных и работа с ними с помощью языка SQL, язык Python и его применения для сбора, визуализации и анализа данных, статистика и машинное обучение, а также конкретные аналитические и продуктовые подходы, которые понадобятся при работе над реальными задачами.
В результате прохождения программы вы получите актуальный технический стек современного аналитика для работы в ведущих IT-компаниях.

Программа:

  1. Python для автоматизации и анализа данных
    18 занятий
  2. SQL
    10 занятий
  3. Прикладная статистика
    10 занятий
  4. A/B-тестирование
    5 занятий
  5. Business Intelligence
    7 занятий
  6. Машинное обучение
    14 занятий
  7. Продуктовая аналитика
    10 занятий.

Программа направлена на подготовку специалистов в области машинного обучения и анализа больших данных, на получение компетенций, необходимых для выполнения нового вида профессиональной деятельности — умения применять языки программирования SQL и Python д​ля сбора, визуализации, анализа больших данных (Big data) и построение моделей машинного обучения, умения применять конкретные аналитические и продуктовые подходы при работе над реальными задачами маркетинговой и клиентской аналитики с помощью BI платформ.

В результате обучения выпускник программы приобретёт следующие компетенции:

  • Способность использовать прикладное программное обеспечение при решении профессиональных задач;
  • Способность осуществлять поиск, критически анализировать, обобщать и систематизировать информацию, использовать системный подход для решения поставленных задач;
  • Способность к постановке целей и задач исследований, выбору оптимальных путей и методов их достижения;
  • Способность к сбору информации о бизнес-проблемах или бизнес-возможностях;
  • Способность к анализу, обоснованию и выбору решения;
  • Умение подготавливать данные для проведения аналитических работ по исследованию больших данных;
  • Способность к проведению аналитического исследования с применением технологий больших данных в соответствии с требованиями заказчика Объем программы: 256 часов из них более 60% контактный.

По окончании обучения в случае успешной сдачи экзамена слушатели получают:
Диплом о профессиональной переподготовке Финансового университета, дающий право ведения новой профессиональной деятельности. ​

Цель образовательной программы — подготовка бизнес-аналитиков, обладающих междисциплинарными компетенциями из предметных областей математики, программирования, информационных систем, аналитических цифровых технологий, а также из сфер прикладной экономики, менеджмента, финансового анализа.

Изучаемые дисциплины:

  1. Высшая математика (математический анализ, дискретная математика, математическая статистика, линейная алгебра)
  2. Гуманитарные дисциплины (экономика, философия, история, основы права)
  3. Теоретические основы информатики и офисные приложения
  4. Социально-экономическая статистика и эконометрика
  5. Моделирование и автоматизация бизнес-процессов
  6. Теория организации и организационное поведение
  7. Основы программирования для аналитиков
  8. Основы программирования для аналитиков
  9. Цифровые технологии анализа данных
  10. Основы финансового анализа
  11. Архитектура предприятия
  12. Блокчейны в бизнесе.

По окончании обучения выпускники смогут работать:

  • Специалистами по анализу больших данных (Big Data) и искусственному интеллекту (AI)
  • Бизнес – аналитиками по описанию и автоматизации бизнес-процессов предприятия
  • Специалистами по разработке данных (Data Mining)
  • Бизнес-аналитиками (Business Intelligence, BI)
  • Менеджерами интернет-проектов
  • Аналитиками данных (Data Analyst)
  • Менеджерами по развитию
  • Системными аналитиками
  • Интернет-маркетологами
  • Стартап-менеджерами.
Стоимость: бесплатно

Для кого подойдут эти курсы:

  • Аналитики
    Изучите инструменты и станете более востребованными специалистами
  • Маркетологи
    Сможете структуризировать данные, увеличить эффективность рекламных каналов
  • Руководители
    Сможете анализировать продажи в разных разрезах и в динамике
  • Предприниматели
    Построите систему аналитики и найдете точки роста для своей компании
  • Инженеры
    Сможете сменить специализацию и зарабатывать больше, ваши технические знания упростят обучение
  • Фрилансеры
    Сможете предлагать дополнительные услуги вашим клиентам или работать на западные компании
  • Финансисты
    Загружать, анализировать данные, строить отчёты

Курсы:

  1. Getting start with Data Engineering and Analytics (DE — 101)
    ~10 недель, с одним вебинаром в неделю и с домашкой, от простого к сложному, что-то вроде моей карьеры за 10 недель.
  2. Getting Started with Machine Learning и Data Science (ML-101)
    Требуется серьезная мотивация и целеустремленность, чтобы закончить курс, и если вы справитесь со всеми модулями курса ML-101, то вы легко справитесь с базовым уровнем задач на позициях Data Science Intern, Junior Data Scientist, Applied Scientist
  3. Курс по поиску работы для аналитических специальностей в России и за рубежом (JH — 101)
  4. Getting started with SQL for beginners
    Практический видеокурс по работе с базами данных с использованием языка структурированных запросов SQL (Structured Query Language).
    Подойдет тем, кто слышал об SQL, но боялся попробовать
  5. Women in Data Community
    Наша цель — создать наиболее комфортную среду для девушек, которые интересуются карьерой в data. В дополнение к основным курсам, коммьюнити — платформа, где можно пообщаться с девушками из data, узнать про карьеры в data и задать любые интересующие вопросы.

Чему вы научитесь:

  • Анализировать трафик и сайт
    На основе данных составлять аргументированные рекомендации по изменению стратегии и рекламных кампаний
  • Использовать на продвинутом уровне Google Analytics и Яндекс.Метрику
    Настраивать счётчики и цели в Google Analytics и Яндекс.Метрике, разбираться в стандартных отчётах и создавать свои
  • Проектировать систему сквозной аналитики
    Отслеживать полный путь клиента от перехода на сайт до продажи и определять эффективность инвестиций
  • Визуализировать данные
    Наглядно показывать динамику изменения данных.

Программа курса:

Блок 1. Продуктовая аналитика и развитие продуктов

  • Роль и место аналитика в продуктовой команде
  • Lean Canvas
  • HADI циклы
  • Основные типы бизнес-метрик
  • Декомпозиция метрик: иерархия метрик и пирамида метрик
  • Unit-экономика

Блок 2. Google Sheets и Excel

  • Основы работы в Google Sheets
  • Базовые вычислительные функции и формулы

Блок 3. Веб/мобильная-аналитика

  • Введение в digital-аналитику: основные понятия и инструменты
  • Базовые настройки инструментов аналитики Google Analytics и Yandex Metrica
  • Основные отчеты Google Analytics. Метрики и параметры
  • Метрики и параметры. Основные отчеты Yandex Metrica
  • GTM особенности работы и основные возможности
  • Инструменты app-аналитики
  • Основные отчеты App Metrica
  • Google Analytics web+app: важные особенности и возможности
  • Возможности передачи и сбора данных из систем аналитики — BigQuery, ClickHouse, OWOX BI

Блок 4. Маркетинговая аналитика

  • Введение в маркетинговую аналитику
  • Выстраивание аналитики в performance маркетинге
  • Сквозная аналитика или считаем LTV
  • Жизненный цикл клиента и когортный анализ
  • Основы CRM-аналитики. Сегментация клиентов
  • Введение в маркетинговые исследования

Блок 5. A/B-тестирование

  • Проверка гипотез и поиск точек роста с помощью A/B-тестирования
  • Основы математической статистики для A/B тестирования
  • Статистический тест для оценки результатов A/B эксперимента
  • Цель и метрики A/B теста
  • Практическая реализация A/B теста
  • Продвинутые методики тестирования
  • Инструменты для A/B тестирования

Блок 6. SQL для анализа данных

  • Введение в блок SQL
  • Извлечение и фильтрация данных (часть 1)
  • Извлечение и фильтрация данных (часть 2)
  • Преобразование и сортировка данных (часть 1)
  • Преобразование и сортировка данных (часть 2)
  • Группировка данных
  • Введение в базы данных
  • Объединение таблиц
  • Подзапросы
  • Обновление, добавление и удаление данных
  • Создание, изменение и удаление таблиц
  • Advanced
  • Итоговый проект LEGO
  • Бонусный урок

Блок 7. Python

  • Введение в Python
  • Типы данных, функции, классы, ошибки
  • Строки, условия, циклы
  • Списки и словари в Python
  • Пакеты, файлы, Pandas – начало
  • Pandas – продолжение
  • Визуализация данных
  • Базы данных и статистика
  • Многопоточность
  • Веб-сервер flask и контроль версий GIt
  • Итоговый проект

Блок 8. Инструменты визуализации данных

  • Введение в Power BI
  • Power Query. Получение и преобразование данных
  • Модель данных в Power BI
  • DAX (Data Analysis Expressions)
  • Работа с отчетами, базовые принципы визуализации данных
  • Power BI Service и создание дашборда
  • Power BI и Python
  • Итоговый проект: Uber & Lyft
  • Введение в Tableau. Знакомство с инфраструктурой Tableau
  • Модели данных и Табличные вычисления
  • Параметры и уровни детализации в Tableau
  • Псевдонимы, сортировка, Actions
  • Разработка дашбордов. Настройка взаимодействия между визуализациями

Блок 9. Построение Machine Learning моделей

  • Знакомство с машинным обучением
  • Линейная регрессия
  • Бинарная классификация
  • Валидация. Почему это важно
  • Решающие деревья
  • Бутстрап, Бэггинг и случайный лес
  • Feature Engineering, Feature Selection
  • Градиентный бустинг
  • Воркшоп: предсказание оттока клиентов и прогноз продаж
  • A/B тестирование
  • Обучение без учителя
  • Воркшоп: скоринг кредитного портфеля

Блок 10. Нейронные сети и NLP

  • Введение в нейронные сети
  • Обучение нейросетей
  • Глубокое обучение на практике
  • Дополнительные возможности Tensorflow + Keras
  • Свёрточные нейронные сети
  • Введение в NLP, понятие ембеддинга
  • Рекурентные нейронные сети
  • Нейросети с вниманием, трансформеры
  • Metric learning, обучение без учителя
  • Обучение с подкреплением в нейросетях

Блок 11. Рекомендательные системы

  • Введение
  • Метрики и бейзлайны
  • Матричное разложение
  • Рекомендации через поиск ближайших соседей
  • Гибридные рекомендательные системы

Блок 12. Аналитика больших данных

  • Организация команды для работы с данными. CRISP-DM
  • Культура сбора и источники данных / Улучшение качества работы с данными
  • Современные инструменты визуализации данных
  • Машинные методы для обработки данных (на распределенном окружении)
  • Основы работы в Hadoop и MapReduce
  • Основы архитектуры хранения и обработки больших данных, виды обработки и масштабирования
  • DataWarehouse, DataLake (clickhouse)
  • Работа с облачными платформами: AWS, GCP, Azure и другие
  • Практика AWS S3
  • Работа с Airflow
  • Работа в pyspark
  • Построение прогнозных и предсказательных моделей

Блок 13. Дипломная работа и помощь с трудоустройством

  • Работа над дипломным проектом для портфолио
  • Подготовка резюме
  • Подготовка к собеседованию
  • Финальная защита и консультации
  • В финальной программе возможны небольшие правки на основании фидбэка и потребностей студентов курса.
Стоимость: 70 000 ₽ — 75 000 ₽

Аналитик данных извлекает из данных смысл: структурирует их, формулирует и проверяет гипотезы, находит закономерности и делает выводы. Его работа помогает принимать решения в бизнесе, управлении и науке. На курсе мы хотим научить вас пользоваться основными инструментами для получения профессии: Python и его библиотеки, Jupyter Notebook, SQL.

За 6 месяцев обучения по 15 часов в неделю вы освоите востребованные навыки аналитика данных и соберёте портфолио проектов. Вот какие проекты вы будете делать на курсе:

  • Анализ текущей ситуации на рынке игр
    Помогите игровому сервису определить самые популярные направления.
  • Исследование рынка недвижимости в Санкт-Петербурге
    Вычислите рыночную стоимость недвижимости в Санкт-Петербурге.
  • Определение перспективного тарифа для оператора мобильной связи
    Помогите компании определить, какой тариф приносит больше прибыли.

Программа обучения:

  1. Основы Python и анализа данных: бесплатный вводный курс
    Процесс и стадии работы аналитика: основные термины, задачи и инструменты анализа данных. Подготовка данных для анализа. Знакомство с языком программирования Python, аналитической библиотекой Pandas и средой программирования Jupyter.
  2. Введение в профессию «Аналитик данных»
    Знакомство с профессией аналитика. Обзор областей, в которых может работать аналитик. Представление разных видов аналитики. Организационная часть процесса обучения.
  3. Предобработка данных
    Чистые и готовые к анализу данные — первый шаг к решению аналитической задачи. Разбираем инструменты для компенсации недостатков данных.
  4. Исследовательский анализ данных
    Предварительный поиск закономерностей в данных даёт возможность сформулировать первые гипотезы для анализа, а также избежать странных ошибок. На курсе учимся использовать средства визуализации для работы с данными.
  5. Статистический анализ данных
    В ходе работы с продуктом возникает масса гипотез, которые можно проверить понятными статистическими методами. Изучаем основы статистики и теории вероятностей для решения бизнес-задач.
  6. Сборный Проект — 1
    Подготовка данных для анализа. Предварительное исследование датасета. Формулирование и проверка гипотез.
  7. Сбор и хранение данных
    Как устроены базы данных, как извлекать данные из них, делая запросы на языке SQL. Добыча данных в интернете.
  8. Анализ бизнес-показателей
    Ещё ближе к бизнесу — разбираем подробно, что такое метрики и основные инструменты: когортный анализ, воронка продаж и unit-экономика.
  9. Принятие решений в бизнесе на основе данных
    A/B-тестирование: в каких случаях его использовать; проектирование, формирование выборки, получение результатов и их валидация.
  10. Как рассказать историю с помощью данных
    Как правильно презентовать результаты своего исследования, оперируя графиками, важнейшими цифрами и их правильной интерпретацией.
  11. Сборный проект — 2
    Получение данных из базы. Предобработка и обзор датасета. Формулирование гипотез с учётом специфики бизнеса. Проверка гипотез и подготовка выводов в формате аналитического отчёта.
  12. Автоматизация
    Автоматизация процессов анализа данных. Превращение рутинных и постоянных задач в скрипты. Создание дашбордов для разных аудиторий и нужд компании.
  13. Прогнозы и предсказания
    Основы машинного обучения, разбор задачи предсказания оттока пользователей.
  14. Выпускной проект
    Самостоятельное решение аналитической задачи на выбор студента, со всеми стадиями анализа данных.

Чему вы научитесь?

  • Собирать, агрегировать и структурировать данные.
  • Писать регулярные выражения, создавать сводные таблицы, работать с временными рядами.
  • Визуализировать данные.
  • Работать с базами данных.
  • Освоите работу с реляционными СУБД на примере PostgreSQL и Oracle, научитесь использовать NoSQL хранилища на базе MongoDB, Redis и Neo4J.
  • Сможете вычислять статистические параметры наборов данных и узнаете законы распределения.
  • Научитесь строить доверительный интервал и выдвигать гипотезы.

Программа:

Первичная обработка данных:

  1. Введение в науку о данных
  • Основные понятия анализа данных
  • Измерения и шкалы. Виды данных
  • Источники данных. Подготовка данных
  1. Инструменты обработки данных
  • Инструменты первичной обработки данных
  • Электронные таблицы
  • Сортировка и фильтрация данных. Сводная таблица
  1. Визуализация данных
  • Задачи визуализации
  • Методы визуализации
  • Визуализация данных в Google-таблицах
  1. Анализ и преобразование данных
  • Описательная статистика
  • Преобразование данных
  • Нормировка данных
  • Целевая функция
  1. Работа с временными рядами
  • Анализ временных рядов
  • Сглаживание временных рядов
  • Определение трендов временных рядов
  • Построение моделей для временных рядов с сезонными составляющими

Хранение больших данных:

  1. Системы управления базами данных
  • Информационные системы
  • Базы данных: основные функции систем управления данными
  • Архитектура СУБД. Реляционные базы данных
  1. Проектирование структурированных данных
  • Проектирование данных и связей
  • Преобразование ER-модели в БД
  • Создание таблиц. Ограничения целостности
  1. Запросы на языке SQL
  • Оператор SELECT. Условия выборки
  • Агрегатные функции. Вложенные запросы
  • Теоретико-множественные операции. Соединение таблиц
  1. Объекты баз данных
  • Выражения на SQL
  • Встроенные функции на SQL
  • Объекты. Индексы

Статистический анализ данных:

  1. Обзор задач, решаемых статистикой
  • Введение в статистику
  • Точечное и интервальное оценивание
  • Проверка гипотез
  1. Выборочные характеристики
  • Основные понятия и задачи математической статистики
  • Выборочное распределение
  • Эмпирическая функция распределения
  • Гистограмма
  • Выборочные моменты и квантили
  1. Точечное оценивание
  • Точечные оценки и их свойства
  • Метод моментов
  • Состоятельность оценки метода моментов
  • Метод максимального правдоподобия
  1. Точные и асимптотические доверительные интервалы
  • Интервальное оценивание
  • Точные доверительные интервалы для семейства нормальных распределений
  • Асимптотические доверительные интервалы и примеры их построения
  • Асимптотическая нормальность оценки и построение доверительных интервалов
  1. Проверка гипотез
  • Понятие гипотезы и критерия. Ошибки 1 и 2 рода
  • Уровень значимости и мощность
  • Критерии согласия

Элементы теории вероятностей (факультативный курс):

  1. Вероятностное пространство
  • Пространство элементарных исходов. События и операции над ними
  • Простейшее вероятностное пространство
  • Классическое определение вероятности
  • Комбинаторика
  • Условная вероятность. Независимость
  1. Простейшие случайные величины
  • Случайные величины и их характеристики
  • Закон больших чисел. Предельные теоремы в схеме Бернулли
  • Неравенства Маркова и Чебышёва
  1. Общее понятие вероятностного пространства
  • Геометрическая вероятность
  • Общее определение вероятностного пространства
  • Случайные величины и их распределения
  1. Типы распределений случайных величин
  • Распределения случайных величин
  • Многомерные распределения
  1. Числовые характеристики, сходимость
  • Начальные сведения о функциях от случайных величин
  • Некоторые числовые характеристики случайных величин
  • Сходимость последовательностей случайных величин.
Стоимость: 8 950 ₽ — 216 590 ₽

Курсы предназначены для аналитиков, разработчиков аналитических решений и приложений, экономистов и маркетологов, работающих с инструментами анализа данных. Специалисты по бизнес-аналитике, Big Data и Data Mining необходимы практически каждой современной организации, а в особенности – средним и крупным предприятиям с разветвлённой системой филиалов.

Курсы по самым современным методикам анализа:

  • Data Science: от основ до машинного обучения и использования промышленных решений,
  • Python и язык R,
  • Анализ данных на языке SQL,
  • 8 уровней Microsoft Excel: от визуализации данных до технологий Power BI, PowerPivot, Power Query, OLAP и др.,
  • MS SQL Server 2012, 2014 и 2016; Oracle, PostgerSQL, MySQL и другие СУБД,
  • IBM SPSS Statistics и BPMN,
  • Big Data и др.

Окончив курсы, Вы будете свободно и уверенно выполнять статистическую и экономическую обработку больших массивов данных, их визуализацию и анализ, а также понимать работы механизмов глубокого исследования данных, искать скрытые закономерности и алгоритмы обработки.

Преимущества выбора курсов в РоманСеменцов.ру

1. Агрегатор онлайн-курсов


2. Рейтинги онлайн-школ

  • ТОП школ по любым направлениям
  • Дата начала: 2023-01-01
  • Дата окончания: 2023-12-31

3. Актуальное обучение

  • Выбирайте лучшие курсы по отзывам реальных учеников
  • Дата начала: 2023-01-01
  • Дата окончания: 2023-12-31
Онлайн-курсы доступ в любом городе России и СНГ, включая: Уссурийск, Москва, Новочеркасск, Сочи, Томск, Новочебоксарск, Волжский, Сургут, Смоленск, Иваново, Черкесск, Балаково, Обнинск, Владимир, Щёлково, Тольятти, Пятигорск, Орск, Петропавловск-Камчатский, Благовещенск, Новомосковск, Химки, Брянск, Невинномысск, Сыктывкар, Нефтеюганск, Красноярск, Казань, Курск, Орёл, Воронеж, Мурманск, Назрань, Норильск, Миасс, Люберцы, Ижевск, Салават, Златоуст, Новокузнецк, Красногорск, Братск, Прокопьевск, Оренбург, Кызыл, Уфа, Краснодар, Ярославль, Петрозаводск, Орехово-Зуево, Киров, Махачкала, Липецк, Армавир, Комсомольск-на-Амуре, Находка, Великий Новгород, Тюмень, Симферополь, Волгоград, Грозный, Домодедово, Батайск, Казахстан, Ульяновск, Нефтекамск, Копейск, Рыбинск, Королёв, Самара, Сызрань, Долгопрудный, Челябинск, Нижнекамск, Вологда, Альметьевск, Архангельск, Якутск, Череповец, Мытищи, Нижневартовск, Калуга, Кисловодск, Северодвинск, Каспийск, Ангарск, Саранск, Дзержинск, Набережные Челны, Южно-Сахалинск, Березники, Подольск, Абакан, Курган, Тверь, Севастополь, Рязань, Чебоксары, Владивосток, Первоуральск, Новый Уренгой, Санкт-Петербург, Каменск-Уральский, Астрахань, Старый Оскол, Ростов-на-Дону, Керчь, Чита, Шахты, Дербент, Новосибирск, Белгород, Тула, Иркутск, Раменское, Хасавюрт, Хабаровск, Коломна, Екатеринбург, Улан-Удэ, Беларусь, Магнитогорск, Одинцово, Рубцовск, Псков, Нижний Новгород, Минск, Серпухов, Стерлитамак, Электросталь, Пенза, Нижний Тагил, Тамбов, Бийск, Владикавказ, Пермь, Волгодонск, Йошкар-Ола, Ставрополь, Майкоп, Балашиха, Кострома, Барнаул, Новороссийск, Омск, Таганрог, Кемерово, Ковров, Саратов, Калининград, Энгельс

Автор статьи. Ответственный за актуальный контент, текст и редактуру сайта. Эксперт по выбору профессии, курсов и профессий с 2016 года. Делюсь личным практическим опытом.

Оцените автора
Блог Романа Семенцова
Добавить комментарий