- Кто такой продуктовый аналитик?
- Что делают продуктовые аналитики и чем занимаются?
- Что должен знать и уметь продуктовый аналитик?
- Востребованность и зарплаты продуктовых аналитиков
- Как стать продуктовым аналитиком и где учиться?
- 15+ лучших курсов для обучения продуктового аналитика: подробный обзор
- 1 место. Курс «Продуктовый аналитик с нуля до middle» — Нетология
- 2 место. Курс «Профессия Продуктовый аналитик» — Skillbox
- 3 место. Курс «Факультет продуктовой аналитики» — GeekBrains
- Курс «Веб-аналитик с нуля до Junior 2.0» — Skillbox
- Курс «Специализация Продуктовая аналитика» — SkillFactory
- Курс «Продуктовая аналитика» — Skillbox
- Курс «Продуктовая аналитика: понимание продукта через метрики» — Нетология
- Курс «Продуктовый аналитик» — Noukash
- Курс «Продуктовая аналитика» — АНО ДО «Тинькофф Образование»
- Курс «Продуктовая аналитика» — НИУ ВШЭ
- Курс «Аналитик данных» — Яндекс.Практикум
- Курс «Профессия Продуктовый аналитик» — Synergy
- Курс «Профессия: Аналитик (с 0 до PRO)» — PRODUCTSTAR
- Курс «МАРКЕТОЛОГ-АНАЛИТИК» — Product University
- Курс «Аналитик данных» — skypro
- Курс «Системный аналитик» — ProductLIVE
- Курс «для аналитиков» — Русская Школа Управления
- Курс «Продуктовая аналитика» — Synergy
- Курс «Профессия Продуктовый аналитик» — Skillbox (уже неактуален)
- Курс «Продуктовая аналитика» — Skillbox (уже неактуален)
Кто такой продуктовый аналитик?
Продуктовый аналитик — это специалист, который проводит маркетинговые исследования и анализирует рыночные данные, определяя поведение потребителей и тенденции. Продуктовые аналитики дают рекомендации и разрабатывают стратегии запуска на основе проведенного анализа, чтобы повысить прибыльность компании; отслеживают эффективность продукции и рекомендуют изменения для выполнения прогнозов продаж.
Что делают продуктовые аналитики и чем занимаются?
Обязанности на примере одной из вакансий:
- Формирование и внедрение необходимого набора метрик для выполнения целей продукта, построение дашбордов;
- Выявление проблем, возникающих у пользователей, и участие в поиске их оптимального решения;
- Участие в разработке, проведении и интерпретации результатов АБ тестирований;
- Формирование и проверка гипотез, улучшающих пользовательский опыт на сайте компании.
- Собирать и агрегировать данные из различных источников
- Набирать данные и визуализировать по запросам продуктовых менеджеров для поведенческой аналитики
- Размечать событиями сайт и мобильное приложение
- Проводить и участвовать в исследованиях
- Составлять отчеты и предлагать изменения в продукте по результатам проведенных исследований
Что должен знать и уметь продуктовый аналитик?
Требования к продуктовым аналитикам:
- Веб-аналитика в Google Analytics, Google Tag Manager и Яндекс.Метрике
- Сквозная аналитика и построение консолидированной отчётности
- Настройка динамического ремаркетинга в Google Merchant Center
- Аналитика данных на языках Python и R
- Анализ поведения пользователей на сайте и в мобильном приложении
- Оценка эффективности рекламных кампаний, маркетинговых каналов и инструментов
- Проведение A/B-тестов, глубинных интервью, фокус-групп и количественных исследований
- Построение баз данных на SQL, хранение и обработка данных
- Мобильная аналитика в Firebase, AppMetrica, Adjust, Amplitude
- Настройка коллтрекинга
- Построение Customer Journey Map
- Сегментация, профилирование и глубокий анализ целевой аудитории
Востребованность и зарплаты продуктовых аналитиков
На сайте поиска работы в данный момент открыто 11 408 вакансий, с каждым месяцем спрос на продуктовых аналитиков растет.
Количество вакансий с указанной зарплатой продуктового аналитика по всей России:
- от 85 000 руб. – 2 336
- от 150 000 руб. – 1 427
- от 220 000 руб. – 668
- от 285 000 руб. – 290
- от 355 000 руб. – 82
Вакансий с указанным уровнем дохода по Москве:
- от 75 000 руб. – 1 256
- от 150 000 руб. – 869
- от 230 000 руб. – 413
- от 305 000 руб. – 140
- от 380 000 руб. – 46
Вакансий с указанным уровнем дохода по Санкт-Петербургу:
- от 80 000 руб. – 376
- от 145 000 руб. – 209
- от 205 000 руб. – 99
- от 270 000 руб. – 40
- от 335 000 руб. – 19
Как стать продуктовым аналитиком и где учиться?
Варианты обучения для продуктового аналитика с нуля:
- Самостоятельное обучение – всевозможные видео на YouTube, книги, форумы, самоучители и т.д. Плюсы – дешево или очень недорого. Минусы – нет системности, самостоятельное обучение может оказаться неэффективным, полученные навыки могут оказаться невостребованными у работодателя;
- Онлайн-обучение. Пройти курс можно на одной из образовательных платформ. Такие курсы рассчитаны на людей без особой подготовки, поэтому подойдут большинству людей. Обычно упор в онлайн-обучении делается на практику – это позволяет быстро пополнить портфолио и устроиться на работу сразу после обучения.
Ниже сделали обзор 15+ лучших онлайн-курсов.
15+ лучших курсов для обучения продуктового аналитика: подробный обзор
- Научим создавать продукт, который нужен на рынке
- Покажем, как автоматизировать рабочие процессы с помощью Python и Tableau, строить аналитические модели и тестировать гипотезы
- Формат — Видеолекции, вебинары и практические задания
- Уровень — С нуля
- Документ — Диплом о профессиональной переподготовке
Продуктовый аналитик умеет находить точки роста в данных, оформлять их в гипотезы и масштабировать на пользователей. Использует наибольший спектр инструментов для всестороннего изучения данных о пользователе и его поведении.
Чтобы освоить эту профессию, не нужно иметь за плечами опыт работы маркетологом, аналитиком или продуктовым менеджером. Этот курс разработан для новичков в сфере аналитики — специальные навыки будут плюсом, но совсем не обязательны.
≈ 140 000₽
средняя зарплата продуктового аналитика по данным компании «Нормальные исследования»
Чем занимается продуктовый аналитик
- Собирает и готовит данные для анализа, автоматизирует обработку данных и другие рутинные задачи, которые съедают время.
- Анализирует данные сайта или мобильного приложения и находит точки роста для бизнеса.
- Проводит исследования, анализирует метрики, изучает поведение пользователей, строит и проверяет гипотезы.
- Создаёт инфраструктуру, которая позволяет самостоятельно готовить отчёты.
Кому будет полезен этот курс
- Новичкам
Научитесь проводить исследования, анализировать метрики и изучать поведение пользователей. - Маркетологам
Узнаете, как использовать аналитику для увеличения трафика и применять Python для анализа больших данных. - Product-менеджерам, product-оунерам
Сможете тестировать гипотезы, применять аналитические инструменты для развития продукта и усилите свою экспертность.
Чему вы научитесь
С нуля прокачаете все навыки, необходимые middle product analysts
- Быть автономным
Перестанете зависеть от разработчиков в работе с данными и научитесь понимать программистов - Обрабатывать данные из разных источников
Научитесь работать с данными из Google Analytics, SQL, Google Sheets - Анализировать данные сайта или мобильного приложения
Составлять аргументированные рекомендации по изменению стратегии и рекламных кампаний на основе данных - Анализировать пользовательские метрики
Находить проблемные места в продукте и интерпретировать их для улучшения показателей бизнеса - Автоматизировать работу с помощью Python
Почувствуете вкус к оптимизации процессов и освободите время для новых задач - Визуализировать данные с Tableau
Перейдёте от вороха таблиц к понятным визуализациям
Программа курса
Продуктовая аналитика
Научимся формулировать и валидировать идеи продукта. Поговорим о том, как составлять вопросы проблемного, решенческого и ценностного интервью и интерпретировать полученные данные. Узнаем, как выбирать системы аналитики для конкретного проекта, настраивать сбор данных.
- 28 часов теории
- 80 часов практики
- Проверка гипотез, Customer Discovery, проблемные интервью
- Формулирование, приоритизация и проверка гипотез
- Какие метрики нужны и как измерять и отслеживать эффективность
- Юнит-экономика
- Шаги построения метрик продукта, примеры, типовые ошибки. Настройка отчётности и работа с отчётами
- Аналитические фреймворки и система метрик продукта
- Построение метрик и связывание их в систему. Пирамида метрик
SQL и получение данных
SQL — главный инструмент аналитика. С его помощью вы научитесь получать данные, а также фильтровать, агрегировать, импортировать и экспортировать.
- 10 часов теории
- 16 часов практики
- Введение в инфраструктуру
- Основы баз данных
- Основы SQL
- Углубление в SQL
- Работа с PostgreSQL
- Работа с MongoDB
Tableau
Познакомимся с интерфейсом, научимся загружать данные и работать с основными инструментами. Освоим создание дашбордов. Изучим сложные виды визуализаций и научимся работать с расширенной версией инструмента.
- 20 часов теории
- 29 часов практики
- Основные виды визуализаций. Лучшие практики визуализации
- Работа с расчётными полями, фильтрами, множествами и группировками
- Использование параметров, объединение нескольких источников
- Функции LOD, Set Actions, Parameter Actions
- Разработка дашбордов. Настройка взаимодействия между визуализациями
- Tableau Professional. Подключение к базам данных SQL
- Основы работы с Tableau Server
Анализ данных в Python
Научимся пользоваться инструментами Python и работать с главными аналитическими библиотеками, а визуализации помогут быстро находить зависимости и корреляции. Познакомимся со статистикой: именно она помогает закопаться глубже в данные, чтобы найти интересные связи и эффективно генерировать гипотезы.
- 32 часа теории
- 50 часов практики
- Функции и классы
- Продвинутые типы данных: массивы, множества, словари
- numpy и scipy
- pandas
- Визуализация данных: seaborn, plotly, matplotlib
- Основные статистические тесты и проверка гипотез
A/B-тестирование
Научимся измерять эффективность страницы и влиять на конверсию, стимулировать сбыт и повышать прибыльность веб-проекта. Рассмотрим основные причины ошибок в интерпретации данных. Разберёмся в методах оценки вероятности победы варианта при тестировании и познакомимся с реальными кейсами с данными и метриками бизнесов.
- 20 часов теории
- 30 часов практики
- Математика тестов
- Что такое эффективность сайта
- Планирование тестов
- Инструменты для проведения тестов
- JavaScript-тесты и Google Tag Manager
- Анализ данных
- A/B-тесты как метод конверсионной оптимизации
Продуктовый воркшоп
Разберём стратегическое планирование, юнит-экономику и монетизацию. Обсудим особенности продуктового маркетинга и рекламы. Научимся ставить цели и изучим инструменты и пошаговые алгоритмы продвижения.
Эффективные коммуникации и эмоциональный интеллект
Переговоры
Публичные выступления
После прохождения основной части программы вы сможете выбрать одну из двух специализаций
Веб-аналитика
Выясним, какие данные считать репрезентативными, чтобы сделать объективный анализ. Узнаем, как работа с данными помогает бизнесу расти быстрее и увеличивать прибыль. Настроим счётчики для отслеживания данных и цели при отправке событий. Разместим дополнительные коды инструментов и скрипты отслеживания данных на сайте через Google Tag Manager без помощи программиста. Научимся использовать Google Data Studio для визуализации данных.
- 38 часов теории
- 41 час практики
- HTML, CSS, JavaScript: для чего веб-аналитику знание этих технологий
- Возможности Google Analytics и Яндекс.Метрики
- Google Tag Manager: единый центр управления тегами
- Использование Excel при анализе данных
- Разработка медиаплана
- Продвинутые возможности Google Analytics: Measurement Protocol, импорт расходов, выгрузка данных в Google Spreadsheet, настройка Client ID и User ID
Мобильная аналитика
Узнаете, в чём отличие мобильной аналитики от веб- и есть ли разница между аналитикой в iOS и Android. Вы познакомитесь с метриками продукта и роста, разными инструментами и сервисами. Поймёте, зачем нужны эксперименты и поиск гипотез и к чему могут привести ошибки в аналитике.
- 18 часов теории
- 28 часов практики
- Введение в мобильную аналитику
- Выбор метрик для приложения и набора данных для их измерения
- Инструменты и сервисы для сбора данных
- Внедрение аналитических сервисов и систем
- Описание структуры событий для поведенческой аналитики
- Анализ поведения пользователей в приложении
- Анализ эффективности рекламных каналов
- Планирование и дизайн эксперимента
- Ошибки в построении мобильной аналитики и интерпретации данных
- Тестирование приложения на реальных пользователях перед релизом
Гарантия возврата денег
У вас есть три занятия, чтобы попробовать. Если передумаете учиться, скажите — и мы вернём вам всю сумму.
Дипломный проект
Вы примените полученные навыки для решения своих текущих профессиональных задач: это может быть дашборд с визуализацией ключевых бизнес-показателей, комплекс предложений по оптимизации стратегии компании, поиск и обоснование точек роста бизнеса.
Ваше резюме после прохождения курса
Что умею делать
- Анализировать данные из большого количества источников
- Визуализировать данные и формировать автоматические отчёты
- Разрабатывать аналитические дашборды с учётом специфики бизнеса
- Рассчитывать эффективность бизнеса и кластеризировать пользователей
- Проводить A/B-тесты и отсеивать гипотезы, которые точно не будут работать
- Проверять гипотезы даже при отсутствии данных
- Измерять эффективность каналов продвижения
- Использовать прикладную математику для аналитических решений в маркетинге и бизнес-аналитике.
- Обрабатывать большой объём данных при помощи Python
- Применять в работе классические Data Science библиотеки
- Создавать аналитическую архитектуру с учётом особенностей бизнеса
- Разбираюсь в многообразии метрик и настройке систем аналитики
- Понимаю, что нужно анализировать до и после запуска продукта или новой фичи
Инструменты, которые вы освоите
- Scikit-learn
Базовая библиотека в Python для построения алгоритмов машинного обучения
- Pandas
Наиболее продвинутая и быстроразвивающаяся библиотека для обработки и анализа данных в Python
- Python
Язык программирования
- Matplotlib
Библиотека Python для визуализации данных
- Seaborn
Библиотека Python для визуализации статистических данных
- Git
Система управления версиями кода. - Tableau Desktop
Система интерактивной аналитики, позволяющая в сжатые сроки проводить глубокий и разносторонний анализ больших массивов информации.
- Яндекс.Метрика
Сервис счётчика посещений, измеряющий конверсию сайта и анализ интернет-рекламы. Предназначен для оценки посещаемости веб-сайтов и анализа поведения пользователей.
- Google Analytics
Сервис для создания детальной статистики посетителей веб-сайтов. Статистика собирается на сервере Google, пользователь только размещает JS-код на страницах своего сайта.
- Google Tag Manager
Система управления тегами, созданная Google для управления тегами JavaScript и HTML, которые используются для отслеживания и анализа на веб-сайтах.
Мы поможем с трудоустройством
Вас ждёт бесплатная программа трудоустройства Центра развития карьеры
Вы узнаете, как развивать продукты с помощью аналитики. Научитесь использовать Python и BI для обработки данных, тестировать гипотезы и управлять пользовательским опытом. Сможете получить востребованную профессию с нуля.
- ★ 4,75 из 5 на основе 3 000 оценок курса
- Первый платёж через 3 месяца
- Язык программирования Python для анализа данных
- Гарантируем трудоустройство, или вернём деньги
- Занимайтесь 2 часа в день и получите шанс трудоустроиться через 3 месяца
- Работайте удалённо с компаниями в России и по всему миру.
Продуктовый аналитик помогает запускать и развивать цифровые продукты: приложения, интернет-сервисы и сайты. Он следит за поведением пользователей, собирает данные и переводит их на язык бизнеса. Специалист может работать удалённо из любой точки мира. Для работы нужен только компьютер и доступ в интернет.
Аналитик исследует все важные метрики продукта и даёт рекомендации, как их улучшить. В результате сервисы становятся более удобными, а прибыль компании растёт.
По данным hh.ru зарплата специалиста с опытом от 1 до 3 лет – 120 000 рублей.
Кому подойдёт этот курс:
- Новичкам в аналитике
Научитесь строить систему продуктовых метрик и исследовать клиентский опыт. Опробуете инструменты аналитики на реальных кейсах и соберёте портфолио. - Продакт-менеджерам
Освоите инструменты аналитики, научитесь работать с данными о продукте. Сможете тестировать гипотезы и эффективнее выстраивать работу команды. - Разработчикам
Научитесь решать задачи бизнеса с помощью анализа данных, оценивать успешность IT-продуктов и влиять на поведение пользователей. Сможете сменить специальность и поднять доход. - Маркетологам
Научитесь работать с продуктовой аналитикой, визуализировать информацию в Tableau и выгружать данные из маркетинговых систем с помощью API. Повысите свою ценность как специалиста.
Чему вы научитесь:
- Строить систему метрик для продукта
Узнаете, как оценивать продуктовые и маркетинговые метрики. Освоите сервисы аналитики сайтов и мобильных приложений. - Обрабатывать и хранить данные
Научитесь анализировать данные с помощью Python и R, освоите SQL. Сможете создавать систему сбора, хранения и анализа информации. - Создавать систему сквозной аналитики
Узнаете, как собирать маркетинговые данные о клиентах, заказах и товарах в единую инфраструктуру. - Проводить исследования клиентского опыта
Поймёте, как сегментировать пользователей и анализировать путь клиента. Научитесь строить CJM и проводить исследования. - Проверять гипотезы
Научитесь проводить A/B-тесты в Google Optimize. Сможете находить инсайты, которые позволят развивать продукт. - Визуализировать данные
Узнаете, как строить графики и создавать интерактивные дашборды в Tableau. Сможете наглядно представлять данные и готовить отчёты.
Содержание курсов:
Вас ждут вебинары и практика на основе реальных кейсов.
81 тематический модуль, 507 видеоматериалов.
- Основные курсы
Изучите основы продуктовой, сквозной и веб-аналитики. Научитесь собирать и анализировать данные, понимать ключевые метрики. Сможете влиять на поведение пользователей, повышать отдачу от рекламы и развивать продукты компании.
- Веб-аналитик с нуля до Junior 2.0
Научитесь работать с основными системами веб-аналитики, собирать данные и понимать ключевые метрики. Узнаете, как анализировать поведение пользователей, эффективность сайта и трафика и повышать отдачу от рекламы. - Продуктовая аналитика
Изучите, как пользователи взаимодействуют с продуктами и с какими сложностями сталкиваются. Научитесь анализировать данные и строить гипотезы по улучшению продукта. Поймёте, как адаптировать продукт под целевую аудиторию и удерживать покупателей. - Сквозная аналитика
Научитесь объединять данные из разных систем в единую инфраструктуру, в которой хранится вся информация о клиенте, заказе и товаре. Узнаете, как решать задачи бизнес-юнитов с помощью языка R и хранилища данных. Сможете собирать данные из разных систем и находить инсайты для развития продуктов.
- Дополнительные курсы
Научитесь анализировать поведение пользователей в мобильных приложениях, оценивать эффективность рекламы и привлекать аудиторию. Освоите Business Intelligence — сможете работать в системе Linux и с языками программирования SQL и Python.
- Аналитик мобильных приложений
Узнаете, как собирать данные о поведении пользователей мобильных приложений. Научитесь оценивать эффективность рекламных каналов, отслеживать выручку и привлекать аудиторию. Настроите аналитику в реальном приложении, улучшите показатели монетизации и конверсии. - Основы и практика Business Intelligence
Научитесь создавать хранилища данных в Linux и проектировать базы данных на языке SQL. Освоите Python для аналитики и научитесь работать с таблицами на продвинутом уровне.
- Бонусный курс
- CX-исследования
Научитесь оценивать опыт пользователя, сегментировать аудиторию и строить Customer Journey Map. Поймёте, чем живут ваши клиенты и как дать им то, чего они хотят.
- Итоговый проект
- Веб-аналитика для сайта компании
Вы выполните итоговое задание для подготовки к собеседованию. Вам предстоит ответить на вопросы о веб-аналитике и подготовиться к выполнению тестовых заданий для компаний.
Ваше резюме после обучения:
- Должность – продуктовый аналитик
- Заработная плата – от 60 000 ₽
- Профессиональные навыки:
– Веб-аналитика в Google Analytics, Google Tag Manager и «Яндекс.Метрике»
– Анализ поведения пользователей на сайте и в мобильном приложении
– Мобильная аналитика в Firebase, AppMetrica, Adjust, Amplitude
– Сквозная аналитика и построение консолидированной отчётности
– Оценка эффективности рекламных кампаний, маркетинговых каналов и инструментов
– Настройка динамического ремаркетинга в Google Merchant Center
– Проведение A/B-тестов, глубинных интервью, фокус-групп и количественных исследований
– Построение customer journey map
– Аналитика данных на языках Python и R
– Построение баз данных на SQL, хранение и обработка данных
– Сегментация, профилирование и глубокий анализ целевой аудитории
– Настройка коллтрекинга.
Сертификат Skillbox подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.
Освойте профессию продуктового аналитика с нуля. Вы пройдёте путь от базового анализа продуктовых метрик до обработки данных при помощи SQL и Python.
- 12 месяцев
- 4 практических проекта
- Онлайн-лекции и вебинары
- Диплом о переподготовке
- Гарантия трудоустройства
Продуктовый аналитик собирает данные о поведении пользователя. С помощью метрик анализирует его опыт, находит точки роста проекта и переводит всё на понятный бизнесу язык. Такие специалисты незаменимы в компаниях: их работа помогает улучшить качество продукта и принять взвешенные решения.
Гарантия трудоустройства закреплена в договоре. Если после успешного обучения вы не найдёте работу, мы вернём вам деньги
Программа обучения
I четверть
Введение в экономику продукта и маркетинговую аналитику
Проект
Подготовка маркетинговой стратегии развития на год.
Курсы
Продуктовая аналитика и развитие продуктов
— Введение
— Роль и место аналитика в продуктовой команде
— Управление продуктом на основе модели Lean Canvas и роль аналитики в этой модели
— HADI-циклы в продуктовой аналитике
— Основные типы бизнес-метрик
— Навыки построения метрик (например, по методологии Lean Analytics)
— Unit-экономика
— Декомпозиция метрик и факторный анализ: практика
1 месяц — 8 уроков
12 часов обучающего контента, 24 часа практики
Организация и проведение исследований
— Общие сведения об организации исследований
— Сбор и оценка данных
— Анализ рынка digital-продуктов на открытых данных. Сравнение с конкурентами
— Способы анализа продукта и продуктовых матриц
— Инструменты комплексного анализа рынка
— Оценка ёмкости рынка
— Основные правила конкурентного анализа, ключевые показатели. Анализ конкурентных сил по Портеру. Направления конкурентного анализа и оценка конкурентных преимуществ
— Особенности проведения исследований клиентов
1 месяц — 8 уроков
12 часов обучающего контента, 24 часа практики
Маркетинговая и клиентская аналитика
— Введение в маркетинговую аналитику
— KPI и метрики
— Основные источники данных и методы их анализа
— Сквозная аналитика
— Сравнительный анализ основных CRM-систем. Операционные и аналитические модули CRM
— Методы сегментации клиентов и целевой аудитории
— Введение в RFM-анализ
— Введение в когортный анализ
1 месяц — 8 уроков
12 часов обучающего контента, 24 часа практики
II четверть
Пользовательские сценарии онлайн/офлайн и проведение тестов
Проект
Построение ключевых срезов в различных типах продуктов и системах аналитики.
Курсы
Web-аналитика
— Введение в web-аналитику: основные понятия и инструменты
— UTM-метки
— Инструменты веб-аналитики
— Регулярные выражения и их использование в Google Analytics и Яндекс.Метрика
— GTM — особенности работы и основные возможности
— Специальные отчеты Google Analytics
— Виджеты и специальные отчеты Yandex Metrica
— Создание отчетов в Google Data Studio
— Возможности передачи, хранения и обработки данных из систем аналитики
— Google Analytics 4: основные отличия от Google Analytics Universal
— Google Analytics 4: установка через Google Tag Manager
1,5 месяца — 11 уроков
15 часов обучающего контента, 30 часов практики
App-аналитика
— Введение в App-аналитику
— Инструменты аналитики
— Подсчет информации в приложениях и ее визуализация
— Функционал Firebase
— Сырые данные и отчеты
— Составление ТЗ по дизайну или приложению
3 недели — 6 уроков
8 часов обучающего контента, 16 часов практики
A/B-тестирование
— Проверка гипотез и поиск точек роста с помощью A/B-тестирования
— Введение в теорию выборочных обследований
— Статистическая проверка итогов тестирования
— Последовательность проведения A/B-тестов и оценка затрат
— Основные проблемы A/B-тестирования
— Настройка A/B-тестов в Google Optimize
— Настройка A/B-тестов в Firebase
— Итоговое занятие и разбор проблемных зон
1 месяц — 10 уроков
12 часов обучающего контента, 24 часа практики
Концепции CJM и JtBD
— Customer Development
— Метод персон
— Введение в Customer Journey Map
— Построение Customer Journey Map
— Разбор кейсов Customer Journey Map
— Концепция Jobs to be doneCX-проектирование для команды
1 месяц — 7 уроков
12 часов обучающего контента, 24 часа практики
III четверть
Знакомство с SQL. Введение в Data Science и работа с Python
Проект
Изучение данных при помощи SQL. Исследовательский анализ данных и их предобработка в Python. Построение ML модели.
Курсы
SQL
— Введение в SQL
— Фильтрация данных и вычисляемые поля. Практика
— Группировка данных, подзапросы и объединение таблиц. Практика
— Обновление, добавление и удаление данных. Работа с таблицами
— Представления и хранимые процедуры. Особенности обработки транзакций
— Расширенные возможности SQL и основные ограничения
— Работа с популярными программами
1 месяц — 7 уроков
12 часов обучающего контента, 24 часа практики
Python
— Введение в Python
— Циклы и функции. Основы визуализации данных
— Библиотека Pandas
— Работа с разными типами данных
— Основы статистики с Python
— Тестирование и проверка гипотез
— Маркетинговый анализ: RFM анализ
— Когортный анализ на Python — практика
— Основы программирования и визуализации в R
— Визуализация отчетов в R
— Презентация результатов
1,5 месяца — 11 уроков
15 часов обучающего контента, 30 часов практики
Введение в Data Science
— Data Science и Big Data — основные понятия
— Возможности Data Science в распознавании речи и эмоциональной окраски для оптимизации обработки клиентских обращений
— Возможности Data Science в распознавании образов и текста для улучшения пользовательского опыта
— Возможности Data Science в прогнозировании оттока пользователей для роста Retention RateData Science и прогноз LTV
— Кластеризация и random forest: примеры использования
— Сравнительный анализ R и Python
— Обзор основных библиотек на Python и R
1 месяц — 8 уроков
12 часов обучающего контента, 24 часа практики
IV четверть
Аналитическая культура и инструменты визуализации данных
Курсы
Инструменты визуализации
и презентация аналитики
— Сравнительный обзор основных инструментов визуализации данных
— Основные ошибки при проектировании отчётности и визуализации данных
— Расширенные возможности визуализации в Excel и Google Sheets
— Google Data Studio + практика
— Возможности OWOX для визуализации отчётов по веб-аналитике
1 месяц — 5 уроков
12 часов обучающего контента, 24 часа практики
Power BI
— Анализ данных
— Power BI
— Введение в Power Query
— Создание модели данных в Power Pivot
— Язык DAX — Data Analysis Expressions
— Создание визуального слоя отчёта
— Использование расширенного функционала Power View
— Обзор функционала портала Power BI
1 месяц — 8 уроков
12 часов обучающего контента, 24 часа практики
Аналитическая культура в компании
— Организация хранения данных для целей анализа
— Презентация результата команде
— Решение бизнес-задач в команде
— Как работать с командой и подрядчиками
— Как управлять процессами по аналитике
1 месяц — 5 уроков
12 часов обучающего контента, 24 часа практики
V четверть
Дипломная работа и подготовка к собеседованию
Курсы
- Дипломный проект по продуктовой аналитике
- Собеседование и резюме. Видеокурс
Курсы с открытой датой старта
- Видеокурс по Excel
- Английский для IT-специалистов
Ключевые навыки
— Проверка продуктовых гипотез для роста ключевых метрик
— Расчёт Unit-экономики
— Расчёт и прогнозирование LTV
— Анализ данных о поведении пользователей (Google Analytics, Яндекс.Метрика, AppMetrica), сегментация, выявление паттернов
— Построение моделей и формирование гипотез для улучшения продукта и регулирования процессов
— Проверка гипотезы и поиск точек роста с помощью A/B-тестов
— Построение CJM
— Оценка ёмкости рынка
— SWOT-анализ
— SQL
— Python
— Power BI
Вы научитесь настраивать основные системы аналитики и анализировать трафик. Поймёте, как исследовать поведение пользователей и предлагать решения на основе данных. С нуля освоите востребованную специальность и сможете начать карьеру в веб-аналитике.
- Длительность – 6 месяцев
- Практика по Google Analytics, Google Tag Manager и Яндекс.Метрике
- Демосайт для отработки навыков на практике
- Дополнительный модуль по трудоустройству
- План карьерного развития для старта в профессии.
Веб-аналитик исследует поведение посетителей сайта. Он анализирует и решает проблемы, с которыми сталкивается пользователь, и определяет, какая реклама привлекает больше трафика.
На рынке требуются специалисты, которые умеют работать с большими данными и использовать инструменты для их анализа.
45 000 рублей – зарплата начинающего специалиста, по данным hh.ru
Кому подойдёт этот курс:
- Начинающим веб-аналитикам
Научитесь настраивать системы аналитики, проводить тесты и искать ошибки в отчётах. Углубите знания в веб-аналитике и сможете больше зарабатывать. - Интернет-маркетологам
Поймёте, как анализировать данные. Научитесь выгружать информацию из сервисов аналитики и собирать её в один отчёт. Сможете оценивать эффективность рекламы. - Product-менеджерам
Узнаете, как анализировать отчёты и принимать решения, опираясь на них. Научитесь измерять ключевые метрики продукта и аудитории. Сможете управлять продуктами в крупных компаниях. - Предпринимателям
Разберётесь, как работает веб-аналитика, и научитесь самостоятельно её настраивать. Сможете контролировать работу подрядчиков и разговаривать с ними на одном языке.
Чему вы научитесь:
- Настраивать веб-аналитику для проектов из разных отраслей
- Строить и анализировать воронку продаж
- Писать технические задания для разработчиков
- Создавать и анализировать отчёты
- Визуализировать данные в дашбордах
- Работать с базами данных с помощью SQL
- Собирать данные в один отчёт с помощью Google Data Studio
- Тестировать гипотезы и проводить А/B-тесты
- Исследовать поведение пользователей на сайтах.
Содержание курса:
Вас ждут видео и практика на основе реальных кейсов.
20 модулей, 97 видеоматериалов
- Введение в веб-аналитику
Узнаете, какие задачи решает аналитик для бизнеса. Изучите базовые понятия, метрики и основные инструменты для создания отчётов. - Введение в веб-технологии
Поймёте, как устроен интернет с технической стороны и на каких технологиях работает веб-аналитика. Узнаете, что такое фронтенд и бэкенд, протокол HTTP, cookie, LocalStorage. Изучите принципы работы счётчиков веб-аналитики. Познакомитесь с типами и форматами данных, научитесь работать с регулярными выражениями. - Google Analytics. Настройка счётчика
Изучите принцип работы Google Analytics и поймёте, как туда попадает информация с сайта. Научитесь создавать и настраивать счётчики, фильтровать данные в аналитической системе. Получите советы от экспертов по работе с фильтрами. - Google Analytics для бизнеса. Базовый уровень. Часть 1
Узнаете, что такое цели аналитики и научитесь настраивать их в Google Analytics. Разберёте основные виды отчётов в системе аналитики и поймёте, как их создавать и скачивать к себе на компьютер. - Google Analytics для бизнеса. Базовый уровень. Часть 2
Продолжите изучать основные отчёты в Google Analytics и научитесь создавать собственные. - Google Analytics. Настройки отслеживания
Поймёте, для чего нужны UTM-метки и реестр событий на сайте. Научитесь создавать схемы разметок сайта. Узнаете, как настраивать оповещения об изменениях в данных и расширения Tag Assistant и Debugger. - Google Analytics. Сегменты и электронная коммерция
Научитесь настраивать сегменты и сложные последовательности в Google Analytics. Познакомитесь с основными терминами электронной коммерции и их отчётами. - Google Analytics. Разновидности счётчиков
Познакомитесь с Google Analytics 360, разберётесь в разновидностях счётчиков и сможете подбирать их под свои задачи. Научитесь работать с Google Analytics 4: изучите дополнительные возможности платной версии, особенности нового счётчика и кейсы с его применением. Определите плюсы и минусы обновлённой системы. - Яндекс.Метрика. Отличия от Google Analytics
Узнаете сходства и различия между Яндекс.Метрикой и Google Analytics и поймёте, почему нужно использовать эти сервисы аналитики. - Яндекс.Метрика. Основной функционал
Научитесь создавать счётчики. Познакомитесь с основным функционалом в программе и поймёте, как настраивать цели в Яндекс.Метрике. - Яндекс.Метрика. Основные отчёты
Узнаете, как создавать отчёты по аудиториям, каналам, технологиям и целям. Разберёте особенности и недостатки вебвизора, научитесь правильно с ним работать. - Отчёты, метрики и навыки веб-аналитика
Познакомитесь с ключевыми метриками веб-аналитики и узнаете, как собирать отчёты и делать выводы. Научитесь взаимодействовать с командами. Поймёте, какие hard и soft скиллы вам нужно улучшать и как развивать аналитическое и критическое мышление. - Google Tag Manager
Изучите основные возможности Google Tag Manager, научитесь создавать аккаунты и настраивать контейнеры. Поймёте, как с помощью Google Tag Manager устанавливать на сайтах базовые коды счётчиков Google Analytics и Яндекс.Метрики, пиксели Facebook и «ВКонтакте». - Google Tag Manager: настройка событий
Узнаете, как отслеживать действия пользователей на сайте: клики по кнопкам, заполнение форм и скроллинг. Научитесь составлять технические задания для разработчиков по внедрению разметки на сайт. - Google Tag Manager: работа с dataLayer
Разберётесь, что такое массив dataLayer и как с его помощью настраивать события на сайте. Научитесь передавать дополнительную информации о пользователях, сеансах и товарах в Google Analytics. Поймёте, в каких случаях использовать функцию CustomTask. - SQL и Google BigQuery. Часть 1
Изучите функционал и возможности аналитической базы Google BigQuery. Разберётесь с синтаксисом языка программирования SQL, научитесь группировать информацию в базе данных. Поймёте, как писать SQL-запросы. - Визуализация: теория
Познакомитесь с базовыми правилами визуализации и научитесь собирать информацию с заказчиков. Изучите плюсы и минусы основных систем визуализации. Разберёте инструмент Google Data Studio: интерфейс, возможности, основные отчёты. Узнаете, как с помощью этого сервиса совмещать данные из разных источников и создавать собственные метрики. - Визуализация: практика
Поучаствуете в воркшопе, на котором создадите в Google Data Studio отчёт и кастомные метрики, совместите данные из разных источников. Познакомитесь с кейсами спикеров, разберёте ошибки и обсудите, как их можно решить. - A/B-тестирование
Узнаете, что такое А/B-тесты, и познакомитесь с разными видами тестирования. Научитесь формулировать гипотезу и её структуру. Настроите тестирование с помощью Google Optimize и Google Optimize 360. Оцените результаты базовым и продвинутыми методами. Поймёте, как проводить тесты без Google Optimize. - Веб-аналитик в команде
Поймёте, какую пользу бизнесу приносит веб-аналитик. Научитесь готовить отчёты для разных отделов компании, коммуницировать с заказчиками и демонстрировать им результаты своей работы. Разберётесь, как развиваться в профессии. - Итоговый проект. Настройка счётчика в сервисе аналитики
Итоговая работа — это консолидация всех практических заданий курса. Вы покажете, как умеете работать с профессиональными инструментами и анализировать статистику. Вы попробуете себя в роли веб-аналитика: получите цепочку писем с задачами и выполните их в счётчике веб-аналитики на основе учебного сайта.
Ваше резюме после обучения:
- Должность «Веб-аналитик»
- Зарплата от: 60 000 ₽
- Профессиональные навыки:
— Работа с Google Analytics, Google Tag Manager и с Яндекс.Метрикой
— Визуализация данных
— Проведение A/B-тестов
— Создание SQL-запросов
— Анализ поведения пользователей на сайте
— Оценка эффективности рекламных кампаний
— Настройка отчётов и их визуализация внутри систем аналитики
— Настройка пикселей Фейсбук* и «ВКонтакте» на сайтах
— Создание сводного отчёта в Google Data Studio
— Написание ТЗ на разметку событий для разработчика
— Создание дашбордов
— Поиск ошибок в отчётах.
Сертификат Skillbox подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.
Продуктовые аналитики помогают бизнесу получить оценку текущего состояния продукта, внедрить или усовершенствовать процессы аналитики в компанию. Они разрабатывают новые решения для улучшения продукта на основе полученных данных, тестируют найденные решения и прогнозируют их потенциальные результаты.
Продуктовый аналитик умеет:
- работать с метриками продукта и рассчитывать новые
- внедрять аналитику в процессы компании
- добывать данные из открытых и внутренних источников
- анализировать данные любого вида и сложности
- составлять понятные отчеты и использовать необходимые для этого инструменты
- выдвигать гипотезы, выстраивать процесс их тестирования и грамотно интерпретировать результаты
Краткая программа курса
Вас ждет полное погружение в роль продуктового аналитика, вы освоите продуктовый подход, а также методики принятия решений на основе данных.
Постигаем продуктовый
подход
Вы научитесь:
- видеть проблему и находить ее решение.
- разбираться в продуктовых метриках и KPI;
- понимать задачу и переводить ее в ТЗ;
Учимся понимать поведение клиентов
Вы научитесь:
- применять подходящий инструмент в соответствии с типом задачи;
- понимать откуда брать данные и какие именно данные нужны;
- настраивать счётчики web- и мобильной аналитики;
- проводить когортный и RFM-анализ;
- верифицировать данные и понимать адекватность результатов.
Учимся принимать решения
Вы научитесь:
- использовать инструменты для A/B тестов;
- проверять гипотезы с помощью А/B тестов;
- применять статистику для проверки результатов;
- делать выводы на основе данных.
Подведем итоги
- структурируем знания по аналитической культуре и продуктовому подходу;
- Поговорим о результатах:
- подведем итоги курса.
Отзывы на сайте.
Навыки после обучения:
- Владею web-, мобильной и app-аналитикой
- Профи в A/B-тестах, когортном и RFM-анализе
- Делаю запросы на Python, пользуясь NumPy и Pandas
- Хороша в CustDev, оценке рынка и unit-экономике
- Владею основами управления продуктовой командой
- Защитила дипломную работу по специальности «Product Management»
Научитесь анализировать метрики, чтобы быстро понять, как улучшить любой продукт. Узнаете, как проводить A/B-тестирование, находить аномалии в данных и визуализировать результаты для заказчика. Сможете начать карьеру в востребованной сфере.
- Итоговый проект в конце курса
- Опытные спикеры из Rutube, SberDevices, «Тинькофф Банка», «МТС Банка»
- Ключевые инструменты аналитики – Power BI, Python, SQL, AppMetrica, «Яндекс.Метрика» и другие
- Подборка инструментов-аналогов для работы в условиях импортозамещения.
Кому подойдёт этот курс:
- Начинающим продуктовым аналитикам
Освоите базовые инструменты. Научитесь проверять продуктовые гипотезы, находить инсайты и визуализировать данные. Соберёте портфолио и начнёте зарабатывать. - Junior-продакт-менеджерам
Поймёте, как устроена продуктовая аналитика. Научитесь ставить задачи аналитикам так, чтобы получить ожидаемый результат. Сможете принимать бизнес-решения на основе данных. - Специалистам из сферы маркетинга, финансов и IT
Освоите аналитические инструменты и научитесь развивать продукты в команде. Получите востребованную профессию и сможете перейти в другую сферу. - Руководителям и предпринимателям
Поймёте, какую пользу для бизнеса приносит работа с данными. Научитесь настраивать процессы аналитики, сможете нанять квалифицированного специалиста и улучшить показатели бизнеса.
Чему вы научитесь:
- Анализировать продуктовые метрики
Поймёте, как выбрать подходящие метрики для анализа продукта. Освоите работу с пирамидой метрик. - Находить точки роста продукта
Научитесь искать аномалии и тестировать гипотезы. Узнаете, как анализировать данные по продукту. - Работать с инструментами аналитики
Освоите софт для быстрого сбора, анализа и визуализации данных. - Строить аналитические дашборды
Изучите алгоритм сборки дашборда. Научитесь визуализировать данные и сможете представлять их заказчику. - Проводить A/B-тесты
Узнаете, как тестировать гипотезы. Сможете интерпретировать полученные результаты. - Брифовать заказчика
Поймёте, как сформулировать ТЗ с заказчиком. Сможете предоставить ожидаемый результат.
Содержание курса:
Вас ждут вебинары и практика на основе реальных кейсов.
20 видеоматериалов, 14 практических задач.
– 1-й уровень. Основы работы с продуктовыми метриками
Это первый этап, на котором вы изучите базовые понятия продуктовой аналитики. Посмотрите на метрики глазами аналитика. Научитесь строить пирамиду метрик и составите первый дашборд.
- Интро
- Значение аналитики для бизнеса
- Продукт глазами аналитика
- Работа аналитика с продуктовыми метриками.
- Как создать дашборд
– 2-й уровень. Работа с гипотезами и разработка артефактов
Начнёте осваивать софт для аналитики. Научитесь работать с источниками данных, тестировать гипотезы и находить инсайты. На этом этапе вы выполните основную часть практических работ.
- Как забрифовать заказчика
- Как собрать данные для дашборда
- Как создать модель данных и очистить данные
- Интерпретация данных
- Визуализация данных
- Работа с инсайтами
- Как принять решение на основе дашборда
- Как оценить качество дашборда
– 3-й уровень. Продвинутая аналитика и работа с инструментами
На этом уровне вы углубитесь в A/B-тестирование, когортный и регрессионный анализ. Освоите полезные инструменты — SQL, Python, «Яндекс.Метрику», AppMetrica. Сможете оптимизировать свою работу и на опыте узнаете, какие задачи решают аналитики уровня middle.
- Бонус. Введение в SQL
- Бонус. «Яндекс.Метрика». AppMetrica
- Бонус. Введение в Python
- Методы тестирования гипотез. Сложные кейсы A/B-тестов
- Бонус. Регрессионный анализ. Анализ когорт
– Итоговый проект – сводный дашборд по продукту
Вы составите сводный дашборд на основе предложенного кейса. Проверите гипотезы и продуктовые метрики, интерпретируете данные. Подготовите презентацию с выводами для заказчика.
Профессиональные навыки:
- Проверка гипотез с помощью данных
- Расчёт продуктовых метрик и KPI
- Интерпретация данных
- Сборка дашбордов
- Составление ТЗ на дашборд
- Подключение разных типов источников данных к отчётам
- Принятие решений на основе артефактов
- Очистка и проверка качества данных
- Проведение А/В-тестов
- Проведение когортного и регрессионного анализа.
- Разберётесь в аналитических инструментах и сможете строить систему метрик для продукта
- Научитесь собирать данные и принимать на их основе полезные для бизнеса решения
- Когда — В любое время
- Формат — Видеолекции и вебинары в записи
- Менторство — Работа по своему продукту с обратной связью от практиков отрасли
- Документ — Удостоверение о повышении квалификации
Программа курса
У вас есть 3 месяца, чтобы в своём темпе освоить программу и перейти к написанию итоговой работы. Вас ждут видеолекции и практические задания. В заключение — итоговая работа с проверкой и фидбеком от эксперта курса.
Культура решения неопределённых задач
Научитесь системно использовать гипотезы для достижения бизнес-целей, отладите процесс системной проверки гипотез, узнаете, как экономить команде время и ресурсы
- 10 часов теории
- 12 часов практики
- Культура решения неопределённых задач
- Формулировка и прояснение цели
- Диагностика ограничения
- Определение причин ограничения
- Генерация решений, гипотез и их приоритизация
- Проведение экспериментов
- Принятие решения по итогам экспериментов
Основные метрики и юнит-экономика
Научитесь выбирать системы аналитики для конкретного проекта, настраивать сбор данных, применять подход canvas для формулирования метрик, за которыми стоит следить. Соберёте данные в модель юнит-экономики. Выберете юнит для своего типа бизнеса и составите P&L продукта. Определите точки роста бизнеса и рассчитаете финансовые кейсы. Выработаете целевые kpi по развитию бизнеса на основании проведённого анализа.
- 11 часов теории
- 15 часов практики
- Какие метрики нужны и как измерять и отслеживать эффективность
- Метрики бизнеса. Как замерять, использовать, интерпретировать и принимать решения
- Метрики маркетинга. Метрики работы с пользователями. Как замерять, использовать, интерпретировать и принимать решения
- Веб-аналитика. Как собирать данные и анализировать конкурентов
- Юнит-экономика
- Шаги построения метрик продукта, примеры, типовые ошибки. Настройка отчётности и работа с отчётами
Аналитические фреймворки и интерфейсы
Научитесь строить пирамиду метрик, выделять связи, выявлять низкоуровневые метрики. Поработаете над улучшением конверсий воронки, узнаете, как сопоставлять CJM клиента с бизнес-задачами. Разберёте, как анализировать воронки для нашего типа бизнеса, выбирать ключевые финансовые метрики. Поработаете с метриками Revenue, Retention, Referal и узнаете, как можно на них влиять. Выясните способы финального определения потребностей, рассмотрите драйверы и барьеры, методики (CJM, JTBD, Personas).
- 7,5 часа теории
- 11 часов практики
- Метод персон, сценарии, инструменты для работы с пользователями в рамках продукта и интерфейса
- Как собирать аналитические данные с интерфейсов и использовать их, как собирать обратную связь от пользователей
- Виды исследований. А/Б-тестирование
- Аналитические фреймворки и система метрик продукта
- Построение метрик и связывание их в систему. Пирамида метрик
- Шаги построения метрик продукта, примеры, типовые ошибки. Настройка отчётности и работа с отчётами
Python для продуктовых аналитиков и основы статистики
Научитесь работать в рамках продуктовых и аналитических задач с системой контроля версий Git и писать простые функции на языке Python. Узнаете, как добывать нужные данные и проводить с ними операции, используя библиотеку Pandas. Научитесь создавать простые схемы визуализации для презентации руководству. Узнаете, как корректно формулировать аналитические задачи и обосновывать их техническое решение.
- 7 часов теории
- 7 часов практики
- Настройка окружения, основы работы с Git
- Использование готовых функций библиотеки Pandas под свои задачи. Объединение данных из разных источников
- Визуализация данных. Основы работы с Plotly и Seaborn
- Основные статистические понятия и термины. Типы переменных. Меры центральной тенденции. Виды распределений
- Корреляция и регрессия. Условия применения коэффициента корреляции. Регрессия с одной независимой переменной
Основы SQL
Научитесь рассчитывать ROI, юнит-экономику, retention по когортам, RFM-сегментацию, имея сеты данных. Узнаете, как работать в ClickHouse. Разберётесь в написании простых запросов и сможете получать нужную информацию из базы данных. Научитесь работать с таблицами, компоновать данные и группировать их по нужным параметрам.
- 4 часа теории
- 5 часов практики
- Основы SQL для решения продуктовых задач
- Работа с таблицами. Работа с индексами. Примеры на продуктовых кейсах
- Группировка данных. Вспомогательные функции
Дашборды и работа с отчётами
Научитесь работать в Tableau и сможете составлять отчёты, выгружать данные, анализировать отчётность, детализировать до нужного уровня фрагменты данных, визуализировать данные и понимать язык графиков.
- 4,5 часа теории
- 4 часа практики
- Задачи и инструменты визуализации, типы данных и виды их визуализаций, основные принципы визуализации
- Работа с дашбордами. Tableau. Работа в режиме реального времени. Визуализация
- Инструменты Tableau для визуализации: фильтры, параметры, измерения. Подключения к источникам данных
Итоговый проект
По итогам обучения под руководством экспертов курса вы выполните дипломную работу, детально проработав свой проект с точки зрения продуктовой аналитики.
20 часов практики
Ключевые навыки
- Построение системы метрик
- Организация подхода к продукту со стороны аналитики
- Понимание, для каких продуктов какие метрики нужны
- Масштабирование аналитики для больших проектов
- Визуализация данных и составление отчётов
- Работа с базами данных
- Построение юнит-экономики продукта
Как войти в айти новичку? Самый простой ответ — через программирование. Можно стать программистом, они нужны везде. Но помимо программистов, есть множество других профессий в айти, работа в it не ограничивается разработчиками. Продукт менеджеры, проджект менеджеры, маркетологи, продуктовые аналитики. Про них знают меньше народу, но они есть практически в каждой продуктовой it компании. Это видео как раз о позиции «продуктовый аналитик».
Я сам работаю продуктовым аналитиком и расскажу о том:
-Чем занимаются продуктовые аналитики?
Что они делают для компании.
-Сколько зарабатывают продуктовые аналитики (на личном опыте).
-Что нужно знать и уметь чтобы стать продуктовым аналитиком. Какие скиллы и знания точно понадобятся.
-Что нужно учить новичку чтобы гарантированно попасть на джуниорскую вакансию
Если вам нравится такой разбор профессии — обязательно пишите об этом в комментариях и сниму такие же разборы про другие специальности. Моя контент политика почти целиком основана на ваших отзывах и предложениях 🙂 Почему-то на ютубе мало контента про не такие известные специальности. Есть много видео для разработчиков (как стать программистом, как научиться кодить и т.д), а про остальных почти ничего. Будем исправлять.
Это видео будет полезно также тем, кто только учится и выбирает профессию в it. Обязательно присмотритесь к продуктовой аналитике — это интересно и востребовано (знаю не понаслышке :))
Таймкоды:
00:00 — Кто такие продуктовые аналитики? Чем они занимаются?
01:33 — 3 направления работы работы. Основные обязанности ПА.
07:17 — Зарплатная вилка продуктового аналитика. От 0 до Senior
09:20 — Что должен знать продуктовый аналитик?
11:05 — Что важно выучить новичку в первую очередь?
Научим анализировать данные и принимать эффективные продуктовые решения. Курс для тех, кто мечтает стать аналитиками и product owner
Что вы получите
1
Понимание, как устроено привлечение в интернете
Узнаете, какие бывают каналы привлечения, модели атрибуции и как считается эффективность привлечения
2
Опыт работы с метриками продукта
Научитесь считать retention, делать когортный анализ и выводы на основе продуктовых метрик
3
Опыт работы с мобильной и веб-аналитикой
Узнаете, в чём отличия и как работать с инструментами: Amplitude, Appsflyer, Google Analytics, Tag Manager
4
Понимание о хранилищах данных и анализе с помощью SQL, Python
Познакомитесь с основными системами хранилищ и их особенностями: GreenPlum, Hive, Oracle. Научитесь писать эффективные запросы на SQL, поработаете с основными библиотеками Python для анализа данных
5
Понимание как правильно визуализировать данные
Узнаете, какие графики для каких случаев подходят и освоите основные инструменты визуализации
6
Опыт проведения АБ-тестов
Научитесь формировать гипотезы, проверять результаты на статистическую значимость и познакомитесь с моделями машинного обучения для персонализации
Курс поможет студентам на практическом материале изучить специфику работы продакт-менеджера, освоить навыки продуктовой аналитики, построения модели цифрового продукта и познакомиться с бизнес-практикой управления цифровым продуктом.
- Цель освоения дисциплины
- Цель курса — погрузить студентов в работу менеджера продукта и продуктового аналитика, на практических задачах научить работать с инструментами – от самых основ до пайплайнов обработки детальных данных о поведении пользователей.
- Планируемые результаты обучения
- Имеют представления о сфере применения бизнес-аналитики и продуктовой аналитики в управлении.
- Владеют навыками работы с метриками и системами аналитики.
- Имеют навыки системного продуктового мышления.
- Умеют создавать модель продукта и использовать её для принятия решений.
- Владеют и применяют методики управления продуктом, используемые в цифровых компаниях.
- Принимают обоснованные решения в разработке продукта. Могут выполнять роль Product Owner при работе с командой разработчиков. Могут создавать пользовательские модели, пользовательские сценарии, бизнес-планы, стратегии ценообразования. Владеют методами визуализации данных в продуктовой аналитике. владеют системой аналитики Amplitude, Sensor Tower, App Annie.
- Обладают знаниями о сфере продуктовой аналитики. Формируют траекторию своего профессионального развития.
- Содержание учебной дисциплины
- Обзор проблематики продуктового управления
Введение в понятия «продукт» и «продуктовое управление». Задачи менеджера и руководителя продукта. Место и роль продукта в структуре бизнеса.
- Введение в управление продуктом
Основные метрики, отличие методов корреляции и причинно-следственной связи. Основы развития прикладного программного обеспечения. Базовые метрики для презентации продукта. Принципы запуска продукта. Методы оценки результатов после запуска продукта.
- Анализ рынка и конкурентов
Создание модели для прогнозирования аудитории для оценки улучшений на ключевые метрики. Разновидности метрик продукта и метрик роста. Когортный анализ — основа продуктовой аналитики. Статистическая значимость — применение методов математической статистики на практике для сравнения метрик.
- Модель продукта
Создание модели продукта для оценка потенциала новой функциональности. Гипотеза ценности и модель продукта. Методы и способы устранения замечаний для прогнозирования аудитории для оценки улучшений на ключевые метрики.
- Эксперименты в управлении продуктом
Возможность построения гипотезы на основании результатов в процессе проектирования эксперимента. Качественные методы исследования пользователей для выявления и устранения замечаний. История создания и развития мобильных коммуникационных систем. Применение фреймворка для поиска скрытых ценностей продукта. Отстройка продукта от найденной ценности. Проверка рискованных гипотез на продукте.
- Управление каналами работы со спросом
Прогнозирование ключевых каналов дистрибуции для сервисов. Тонкости метрики коэффициента окупаемости и применение когортного анализа для этого значения. Методы и способы анализа целевого рынка. Покупка трафика в рекламных сетях. Формирование семантического ядра продукта. Управление знаниями о продукте и анализ полученных результатов.
- Карьера в продуктовом управлении
Как найти свой карьерный путь? Как построить портфолио продактов? Конференции, публикация статей, работа с коммьюнити, с чего начать?
Как стать аналитиком данных
Аналитик данных извлекает из данных смысл: структурирует их, формулирует и проверяет гипотезы, находит закономерности и делает выводы. Его работа помогает принимать решения в бизнесе, управлении и науке. Мы хотим научить вас пользоваться основными инструментами для получения профессии: Python и его библиотеки, Jupyter Notebook, SQL.
Программа обучения
1
Основы Python и анализа данных: бесплатный вводный курс
16 часов
Процесс и стадии работы аналитика: основные термины, задачи и инструменты анализа данных. Подготовка данных для анализа. Знакомство с языком программирования Python, аналитической библиотекой Pandas и средой программирования Jupyter.
+ 1 проект в портфолио
2
Введение в профессию «Аналитик данных»
4 часа
Знакомство с профессией аналитика. Обзор областей, в которых может работать аналитик. Представление разных видов аналитики. Организационная часть процесса обучения.
3
Предобработка данных
40 часов
Чистые и готовые к анализу данные — первый шаг к решению аналитической задачи. Разбираем инструменты для компенсации недостатков данных.
+ 1 проект в портфолио
4
Исследовательский анализ данных
40 часов
Предварительный поиск закономерностей в данных даёт возможность сформулировать первые гипотезы для анализа, а также избежать странных ошибок. Учимся использовать средства визуализации для работы с данными.
+ 1 проект в портфолио
5
Статистический анализ данных
40 часов
В ходе работы с продуктом возникает масса гипотез, которые можно проверить понятными статистическими методами. Изучаем основы статистики и теории вероятностей для решения бизнес-задач.
+ 1 проект в портфолио
6
Сборный Проект — 1
20 часов
Подготовка данных для анализа. Предварительное исследование датасета. Формулирование и проверка гипотез.
+ 1 проект в портфолио
1 неделя каникул после курса
7
Сбор и хранение данных
40 часов
Как устроены базы данных, как извлекать данные из них, делая запросы на языке SQL. Добыча данных в интернете.
+ 1 проект в портфолио
8
Анализ бизнес-показателей
40 часов
Ещё ближе к бизнесу — разбираем подробно, что такое метрики и основные инструменты: когортный анализ, воронка продаж и unit-экономика.
+ 1 проект в портфолио
9
Принятие решений в бизнесе на основе данных
40 часов
A/B-тестирование: в каких случаях его использовать; проектирование, формирование выборки, получение результатов и их валидация.
+ 1 проект в портфолио
10
Как рассказать историю с помощью данных
40 часов
Как правильно презентовать результаты своего исследования, оперируя графиками, важнейшими цифрами и их правильной интерпретацией.
+ 1 проект в портфолио
11
Сборный проект — 2
20 часов
Получение данных из базы. Предобработка и обзор датасета. Формулирование гипотез с учётом специфики бизнеса. Проверка гипотез и подготовка выводов в формате аналитического отчёта.
+ 1 проект в портфолио
1 неделя каникул после курса
12
Автоматизация
40 часов
Автоматизация процессов анализа данных. Превращение рутинных и постоянных задач в скрипты. Создание дашбордов для разных аудиторий и нужд компании.
+ 1 проект в портфолио
13
Прогнозы и предсказания
40 часов
Основы машинного обучения, разбор задачи предсказания оттока пользователей.
+ 1 проект в портфолио
14
Выпускной проект
40 часов
Самостоятельное решение аналитической задачи на выбор студента, со всеми стадиями анализа данных.
+ 1 проект в портфолио
Продуктовый аналитик — мостик между бизнесом и данными. Он работает рука об руку с продакт-менеджером и помогает продуктовой команде принимать верные решения. Работает с данными: анализирует, какие кнопки нажимают пользователи, как часто используют продукт, какие функции продукта продукта популярны, а какие — нет. После вытаскивает из цифр инсайты, которые объясняют поведение пользователей.
Кому подойдёт этот курс
Новичкам
Обретете навыки и знания, необходимые для старта профессии: проведете исследования, сможете анализировать метрики.
Маркетологам
Расширите свои профессиональные возможности, освоите новые инструменты, сможете использовать аналитику для увеличения трафика
Product-менеджерам
Сможете применять новые инструменты в своей работе: для развития продукта, тестирования гипотез.
Чему вы научитесь
- Определение направления развития продукта на основе аналитики
- Анализ поведения целевой аудитории
- Определение решения для бизнеса на основе аналитики
- Запуск A/B-тестов
- Анализ конкурентов
- Подготовка отчетности
Программа обучения
7 тематических модулей
49 онлайн-уроков
Введение в профессию
- Введение в продуктовую аналитику
- Роль и место аналитика в продуктовой команде
- Что такое продукт и его отличие от проекта
- Виды продуктов и их отрасли
Управление продуктом
- Анализ рынка и конкурентов
- Различия управления В2В и B2C
- Сделка, маркетинговая воронка и юнит в проекте
- Стратегия управления продуктом
Продуктовая аналитика
- Введение в маркетинговую аналитику
- Каналы трафика
- Маркетиговые метрики
- Основные источники данных и методы их анализа
- Сквозная аналитика
- CRM-системы, назначение и способы работы с ними
- Методы сегментации клиентов и целевой аудитории
- Введение в RFM-анализ
- Введение в когортный анализ
Web- и app- аналитика
- Введение в web- и app- аналитику: основные понятия и инструменты
- UTM-метки
- Возможности передачи и сбора данных из систем аналитики — BigQuery и ClickHouse
- Инструменты веб-аналитики
- Инструменты app-аналитики
- Регулярные выражения и их использование в Google Analytics и Яндекс.Метрика
- GTM, особенности работы и основные возможности
- Основные отчёты Google Analytics
- Основные отчёты Яндекс.Метрика
- Основные отчёты Firebase
- Основные отчёты App Metrica
Организация и проведение исследований
- Цель исследований
- Принципы исследований
- Объекты исследований
- Виды исследований
- Принципы исследований
- Объекты исследований
- Кабинетные исследования
- Качественные исследования
- Количественные исследования
- Этнографические исследования
- Тестирования
- Мониторинг эффективности
- Результаты исследований
Дизайн процесс
- Основы юзабилити
- Юзабилити-тестирование
- UX-дизайн
- Конструкторы сайтов
- Построение Customer Journey map
Представление данных и отчетность
- Визуализация данных в Excel
- Инструменты анализа и оптимизации
- Основы успешной презентации
Освоите с нуля профессию Аналитик продуктов, подробно разберете всю специфику и инструменты данной профессии от Google Analytics, Python и BI-инструментов до Machine Learning и DataScience
Чему вы научитесь
Анализировать трафик и сайт
На основе данных составлять аргументированные рекомендации по изменению стратегии и рекламных кампаний
Использовать на продвинутом уровне Google Analytics и Яндекс.Метрику
Настраивать счётчики и цели в Google Analytics и Яндекс.Метрике, разбираться в стандартных отчётах и создавать свои
Проектировать систему сквозной аналитики
Отслеживать полный путь клиента от перехода на сайт до продажи и определять эффективность инвестиций
Визуализировать данные
Наглядно показывать динамику изменения данных
Программа курса
Блок 1
Продуктовая аналитика и развитие продуктов
- Роль и место аналитика в продуктовой команде
- Lean Canvas
- HADI циклы
- Основные типы бизнес-метрик
- Декомпозиция метрик: иерархия метрик и пирамида метрик
- Unit-экономика
Блок 2
Google Sheets и Excel
- Основы работы в Google Sheets
- Базовые вычислительные функции и формулы
Блок 3
Веб/мобильная-аналитика
- Введение в digital-аналитику: основные понятия и инструменты
- Базовые настройки инструментов аналитики Google Analytics и Yandex Metrica
- Основные отчеты Google Analytics. Метрики и параметры
- Метрики и параметры. Основные отчеты Yandex Metrica
- GTM особенности работы и основные возможности
- Инструменты app-аналитики
- Основные отчеты App Metrica
- Google Analytics web+app: важные особенности и возможности
- Возможности передачи и сбора данных из систем аналитики — BigQuery, ClickHouse, OWOX BI
Блок 4
Маркетинговая аналитика
- Введение в маркетинговую аналитику
- Выстраивание аналитики в performance маркетинге
- Сквозная аналитика или считаем LTV
- Жизненный цикл клиента и когортный анализ
- Основы CRM-аналитики. Сегментация клиентов
- Введение в маркетинговые исследования
Блок 5
A/B-тестирование
- Проверка гипотез и поиск точек роста с помощью A/B-тестирования
- Основы математической статистики для A/B тестирования
- Статистический тест для оценки результатов A/B эксперимента
- Цель и метрики A/B теста
- Практическая реализация A/B теста
- Продвинутые методики тестирования
- Инструменты для A/B тестирования
Блок 6
SQL для анализа данных
- Введение в блок SQL
- Извлечение и фильтрация данных (часть 1)
- Извлечение и фильтрация данных (часть 2)
- Преобразование и сортировка данных (часть 1)
- Преобразование и сортировка данных (часть 2)
- Группировка данных
- Введение в базы данных
- Объединение таблиц
- Подзапросы
- Обновление, добавление и удаление данных
- Создание, изменение и удаление таблиц
- Advanced
- Итоговый проект LEGO
- Бонусный урок
Блок 7
Python
- Введение в Python
- Типы данных, функции, классы, ошибки
- Строки, условия, циклы
- Списки и словари в Python
- Пакеты, файлы, Pandas – начало
- Pandas – продолжение
- Визуализация данных
- Базы данных и статистика
- Многопоточность
- Веб-сервер flask и контроль версий GIt
- Итоговый проект
Блок 8
Инструменты визуализации данных
- Введение в Power BI
- Power Query. Получение и преобразование данных
- Модель данных в Power BI
- DAX (Data Analysis Expressions)
- Работа с отчетами, базовые принципы визуализации данных
- Power BI Service и создание дашборда
- Power BI и Python
- Итоговый проект: Uber & Lyft
- Введение в Tableau. Знакомство с инфраструктурой Tableau
- Модели данных и Табличные вычисления
- Параметры и уровни детализации в Tableau
- Псевдонимы, сортировка, Actions
- Разработка дашбордов. Настройка взаимодействия между визуализациями
Блок 9
Построение Machine Learning моделей
Знакомство с машинным обучением
Линейная регрессия
Бинарная классификация
Валидация. Почему это важно
Решающие деревья
Бутстрап, Бэггинг и случайный лес
Feature Engineering, Feature Selection
Градиентный бустинг
Воркшоп: предсказание оттока клиентов и прогноз продаж
A/B тестирование
Обучение без учителя
Воркшоп: скоринг кредитного портфеля
Блок 10
Нейронные сети и NLP
- Введение в нейронные сети
- Обучение нейросетей
- Глубокое обучение на практике
- Дополнительные возможности Tensorflow + Keras
- Свёрточные нейронные сети
- Введение в NLP, понятие ембеддинга
- Рекурентные нейронные сети
- Нейросети с вниманием, трансформеры
- Metric learning, обучение без учителя
- Обучение с подкреплением в нейросетях
Блок 11
Рекомендательные системы
Введение
Метрики и бейзлайны
Матричное разложение
Рекомендации через поиск ближайших соседей
Гибридные рекомендательные системы
Блок 12
Аналитика больших данных
- Организация команды для работы с данными. CRISP-DM
- Культура сбора и источники данных / Улучшение качества работы с данными
- Современные инструменты визуализации данных
- Машинные методы для обработки данных (на распределенном окружении)
- Основы работы в Hadoop и MapReduce
- Основы архитектуры хранения и обработки больших данных, виды обработки и масштабирования
- DataWarehouse, DataLake (clickhouse)
- Работа с облачными платформами: AWS, GCP, Azure и другие
- Практика AWS S3
- Работа с Airflow
- Работа в pyspark
- Построение прогнозных и предсказательных моделей
Блок 13
Дипломная работа и помощь с трудоустройством
- Работа над дипломным проектом для портфолио
- Подготовка резюме
- Подготовка к собеседованию
- Финальная защита и консультации
- В финальной программе возможны небольшие правки на основании фидбэка и потребностей студентов курса
Ваше резюме и проф.навыки после курса
Должность: Аналитик
Зарплата от: 125.000 рублей
Веб-аналитика
Продвинутая работа с инструментами веб-аналитики (Google Analytics, Я.Метрика)
Mobile-аналитика
Навыки работы с инструментами мобильной аналитики (Appsflyer, AppMetrica)
Конкурентный анализ
Работа с инструментами SEMRush, Similarweb, Яндекс.Радар
Продуктовые навыки
Построение и анализ MVP-решений, работа с HADI-циклами
Декомпозиция метрик
Навыки выбора корректных метрик для продукта
Маркетинговая аналитика
UTM-ки, постбэки, промо-коды, колтрекинг и другие способы анализа трафика
Аналитика воронки продаж
Навык построения сквозной аналитики воронки продаж
A/B-тестирование
Проведение и расчёт A/B-тестов с корректной стат.значимостью
SQL
Продвинутый уровень анализа данных за счёт использования SQL-запросов
Python
Построение базовых отчётов и автоматизация работы с помощью библиотек Python
Визуализация данных
Навыки работы с OWOX, продвинутый уровень в Google Sheets и Google Data Studio
Презентация данных
Подготовка отчётов и презентация результатов анализа данных
После программы вы научитесь принимать решения на основе данных, настраивать сквозную аналитику, анализировать поведение пользователей на сайте, делать понятные отчеты и дашборды, автоматизировать процессы в компании.
Программа
8 недель
Неделя 1
Ключевые метрики и отчеты в маркетинге
- Принципы построения воронки продаж и основные этапы.
- Основные метрики: Конверсии, CAC, LTV, ROI и др.
- Юнит-анализ. Экономика одного заказа.
- Основы измерений, статистики, типы данных и их визуализация.
Неделя 2
Дашборды и визуализация данных
- Типы данных и их иерархия.
- Способы визуализации данных.
- Требования к источникам данных.
- Принятия решений на основе данных.
- Лучшие практики и типовые отчеты в маркетинге.
- Обзор основных инструментов визуализации данных и построение дашбордов в Tableau и Google Data Studio.
Неделя 3
Google Analytics и Tag Manager
- Введение в GA, передача данных, настройки, цели, события.
- Аудитории, Контент, Представления, Фильтры, Отчеты, Сегментация
- Привлечение, Конверсии, Когорты, Электронная коммерция, Атрибуция.
- Настраиваемые отчеты и Дашборды.
- Работа с Tag Manager — контейнеры, триггеры, события. Основные настройки. Отслеживание кнопок и форм.
Неделя 4
Яндекс. Метрика и рекламный кабинет Facebook
- Основные отличия от GA.
- Вебвизор, карта кликов.
- Настройка пикселей и целей в Facebook.
- Сбор данных о пользователях. Возможности таргетинга.
- Основные отчеты из Facebook.
Неделя 5
Сквозная аналитика в Roistat и коллтрекинг
- Введение в сквозную аналитику. Анализ пользователей.
- Настройка Roistat и Сomagic и интеграция с другими сервисами (Tilda, AmoCRM и др.)
- Когортный анализ.
- Основные отчеты и дашборды.
Неделя 6
Анализ данных и A/B-тесты
- Основы статистики.
- A/B-тесты, их проектирование и анализ результатов.
- Язык SQL и работа с данными.
- Введение в Python и основные библиотеки.
- Подготовка данных для анализа.
- Обзор основных инструментов для анализа данных.
Неделя 7
Автоматизация процессов, CRM и No-code подход
- Основы AmoCRM.
- Настройка этапов и воронок продаж.
- Интеграция с основными сервисами.
- Автоматизация и отчетность.
Conversational Marketing без программирования. Создаем чат-ботов
- Делаем бота поддержки, который собирает лидов и записывает клиентов.
- Делаем бота, который собирает новости и присылает их каждое утро нам в telegram.
Автоматизация бизнес-процессов
- Основы API и интеграций.
- База данных в Airtable.
- Основы PWA.
- Автоматизация процессов с помощью Integromat и Zapier.
Неделя 8
Выпускная работа и презентации дашбордов
Представления плана маркетинговой кампании для работодателя и своего портфолио.
Создание собственного резюме и портфолио из дашбордов.
Инструменты, которые вы освоите за 8 недель
Tableau
Популярный инструмент визуализации и обработки данных
AmoCRM
Одна из самых популярных и функциональных CRM-систем
Google Data Studio
Инструмент построения дашбордов из различных источников данных
Google Analytics
Самый популярный инструмент аналитики сайтов в мире
Яндекс.Метрика
Самый популярный инструмент аналитики сайтов в России
Roistat
Сквозная аналитика
SQL
Язык структурированных запросов
Integromat
Автоматизация бизнес-процессов и интеграция разрозненных сервисов
Программа на 100% соответствует требованиям к вакансиям junior-аналитиков
В конце курса вы станете уверенным junior-аналитиком и сможете найти первую работу в IT
- Прогнозирование и ML для аналитических задач
- Статистика и А/Б-тестирование
- Работа с Python для обработки данных
- Работа с SQL
- Работа с данными в Excel
- Построение дашбордов в Power BI
Программа
Навык 1
SQL для анализа
данных
Вы научитесь
- собирать данные, трансформировать и проводить анализ при решении аналитической задачи;
- обращаться к базе данных с помощью SQL;
- понимать, какие данные нужны для решения задачи;
- писать базовые и сложные запросы на SQL;
- преобразовывать данные и анализировать;
- использовать все операторы SQL.
Базовые запросы.
1 модуль
Генерация новых признаков и очистка данных.
2 модуль
Агрегатные функции.
3 модуль
Объединение таблиц.
4 модуль
Подзапросы и WITH.
5 модуль
Оконные функции.
6 модуль
Воркшоп: проводим аналитическое исследование и решаем бизнес-проблему с помощью SQL.
7 модуль
Создание, изменение, удаление данных в таблице, создание индексов. Временные таблицы.
8 модуль
Основы оптимизации.
9 модуль
Аналитический проект в SQL.
Навык 2
Анализ данных в Excel
Вы научитесь
- использовать базовые и сложные процедуры и функции в Excel,
- проводить анализ эффективности рекламных кампаний и создавать отчеты,
- расчитывать метрики для анализа,
- проводить RFM-анализ и когортный анализ,
- прогнозировать,
- проводить семантический анализ.
Первичная обработка данных.
1 модуль
Работа со сложными данными.
2 модуль
Прогнозирование.
3 модуль
Проект по анализу бизнес-метрик.
Навык 3
Визуализация в PowerBI
Вы научитесь
- загружать данные из разных источников,
- объединять данные из разных таблиц,
- визуализировать данные и строить динамические дашборды,
- работать с языком DAX,
- строить комплексные отчеты,
- работать с Tableau.
Загрузка и преобразование данных.
1 модуль
Моделирование и анализ данных.
2 модуль
Визуализация данных и работа с отчетами.
3 модуль
Построение комплексных отчетов.
4 модуль
Дашборд для отдела с ключевыми метриками.
Навык 4
Python для анализа данных
Вы научитесь
- программировать на Python,
- собирать данные из различных источников,
- анализировать полученные данные,
- проводить статистические тесты,
- находить закономерности и зависимости,
- визуализировать и презентовать полученные результаты,
- работать с библиотеками для анализа данных: pandas, matplotlib.
Синтаксис Python.
1 модуль
Библиотеки для анализа в Python.
2 модуль
Визуализация данных в Python.
3 модуль
Python для анализа статистических тестов.
4 модуль
Получение данных из разных источников.
5 модуль
Прогнозирование.
6 модуль
Прогнозирование прибыли.
Навык 5
Статистика на Python
Вы научитесь
- применять основы статистики,
- проверять гипотезы и делать выводы из исследований,
- моделировать и проводить A/B-тесты.
Основы статистики.
1 модуль
Нормальное распределение. Квартили распределения и график box-plot.
2 модуль
Центральная предельная теорема.
3 модуль
Доверительные интервалы для среднего. Понятие о задачах, классификации и ошибках. Метрики качества классификации.
4 модуль
Проверка статистических гипотез. Непараметрические тесты.
5 модуль
Анализ А/В теста.
Навык 6
Аналитика в продукте и маркетинге
Вы научитесь
- переводить бизнес-задачи в аналитические;
- расчитывать метрики для маркетинга, продукта и операционных процессов;
- решать комплексные аналитические задачи в контексте бизнеса.
Маркетинговая аналитика: воронка, конверсии, модели атрибуции.
1 модуль
Продуктовая аналитика: метрики продукта, конверсии, валидация продуктовых гипотез — А/В-тесты.
2 модуль
Планирование ресурсов, HR-планирование.
Что вы получите на курсе
- Сформируете системное мышление
- Получите знания в сфере инженерии и аналитики
- Научитесь правильно ставить задачи разработчикам
- Освоите анализ данных с помощью SQL-запросов
- Узнаете, как проверять реализацию требований заказчика
- Прокачаете хард скилы
Что вы освоите за 6 месяцев
НАВЫКИ IT-СПЕЦИАЛИСТА
- Знаете все о бизнес-моделировании и бизнес-процессах, умеете отличать BPMN от UML
- Обладаете нужными IT-компетенциями (жизненный цикл разработки ПО, теории БД, требования к ПО) для работы с современными компаниями
- Дружите с документацией, обладаете основами программирования и разработки
НАВЫКИ МЕНЕДЖЕРА IT-КОМАНДЫ
- Учитесь быстро понимать требования и определять их приоритет
- Можете четко рассказать о технических решениях и их влиянии на бизнес понятным языком (как разработчику, так и заказчику)
- Знаете, как работать в команде и грамотно распределить задачи
- Знаете, как следовать дисциплине, сохраняя творческий подход
НАВЫКИ ПРОДУКТОВОГО АНАЛИТИКА
- Понимаете основы UX/UI
- Имеете необходимые базовые знания в области менеджмента
Краткая программа курса
2 недели
Введение в профессию
- Вы понимаете специфику работы системного аналитика и бизнес-аналитика
- Понимаете специфику работы команды и взаимодействия с ключевыми лицами
- Знаете, какие фреймфорки взаимодействия есть в команде
5 недель
Анализ требований
- Понимаете, что такое требования
- Умеете их собирать, документировать, проверять на конфликты, приоритизировать
- Знаете, как взаимодействовать с заказчиками
- Умеете описывать бизнес-процессы в BPMN и различаете другие нотации
9 недель
Проектирование системы
- Понимаете архитектуру ИТ
- Разбираетесь в последовательности проектирования и интеграции
- Умеете составлять задание на разработку
- Умеете работать с SOAP и REST и базами данных
- Понимаете основы программирования, умеете читать код
5 недель
Разработка, тестирование и интеграция
- Понимаете основные языки разметки
- Умеете пользоваться Git (работа с версиями, отслеживание изменений)
- Понимаете этапы тестирования и приемки ИТ-продукта
- Умеете оценить, насколько готовое решение соответствует требованиям заказчика
2 недели
Сопровождение и утилизация
- Понимаете способы поддержки и сопровождение систем, обновления ПО
- Финансовый аналитик
- Финансовый анализ бизнеса
- Финансовый анализ: от классики до модерна
- Финансовый менеджмент и финансовый анализ
- Комплексный экономический анализ: современные подходы к управлению экономикой предприятия
- Бизнес-аналитик
- Анализ бизнеса. Управление рисками
- Финансовый анализ и управление рисками. Оценка инвестиционного проекта
- Бизнес-моделирование и оценка эффективности
- Управляющий инвестиционным проектом
- Инвестиционный аналитик
- Оценка инвестиционных проектов: маркетинговые и финансовые инструменты
- Специалист по работе с инвестиционными проектами
- Аналитик-эксперт
- Школа аналитика бизнес-процессов
- Маркетолог-аналитик
- Менеджер по маркетинговым исследованиям
- Прогнозирование и планирование в маркетинге
- Формирование финансовой модели компании. Анализ прибыли и эффективности
- Финансовая оценка и бизнес-планирование инвестиционного проекта
Факультет управления приглашает абитуриентов получить специальность в сфере анализа продукции и результатов деятельности; такие специалисты уже сейчас востребованы в любой компании.
Ключевые дисциплины
В процессе обучения на факультете даются базовые знания о бизнес-анализе, контроле эффективности организации и стратегическом анализе.
Профильные дисциплины позволяют узнать больше о продуктовой, маркетинговой и клиентской аналитике для будущей работы по специальности. Студенты тщательно разбирают концепции CJM и JTBD, а также SQL.
Также важной частью курса являются инновационная и операционная аналитика.
Первый год обучения в магистратуре посвящен ключевым дисциплинам, касающимся исследований в менеджменте и финансах. В качестве практических задач учащиеся проводят анализ корпоративной отчетности и пробуют продвигать продукцию компании. На втором году учебы студенты подробно разбирают инновационную и операционную аналитику и учатся моделировать бизнес-процессы. Преподаватели рассказывают об инструментах визуализации и прикладном маркетинге.
Вы узнаете, как развивать продукты с помощью аналитики. Научитесь использовать Python и BI для обработки данных, тестировать гипотезы и управлять пользовательским опытом. Сможете получить востребованную профессию с нуля.
- ★ 4,75 из 5 на основе 3 000 оценок курса
- Первый платёж через 3 месяца
- Язык программирования Python для анализа данных
- Гарантируем трудоустройство, или вернём деньги
- Занимайтесь 2 часа в день и получите шанс трудоустроиться через 3 месяца
- Работайте удалённо с компаниями в России и по всему миру.
Продуктовый аналитик следит за поведением пользователей внутри продукта, переводит значение цифр на язык бизнеса и помогает развивать продукт, опираясь на точные данные.
- 120 000 рублей
зарплата начинающего специалиста по данным hh.ru
Первые 3 модуля бесплатно
Всем студентам мы даём тестовый доступ к первым трём модулям любого курса программы.
Вы посмотрите лекции специалистов, начнёте осваивать профессию и поймёте, интересно ли вам развиваться в ней дальше.
Кому подойдёт этот курс
- Начинающим аналитикам
С нуля освоите мобильную аналитику и аналитику клиентского опыта и научитесь строить систему метрик для продукта.
Опробуете инструменты продуктовой аналитики на реальных кейсах и добавите первые работы в портфолио.
- Разработчикам
Научитесь решать задачи бизнеса с помощью аналитики, оценивать успешность IT-продуктов и влиять на поведение пользователей.
Сможете уйти от написания кода к решению аналитических задач и поднять свой доход.
- Маркетологам
Научитесь работать с инструментами анализа данных, визуализировать информацию в Tableau и выгружать данные из маркетинговых систем с помощью API.
Сможете принимать решения с опорой на аналитику и повысите свою ценность как специалиста.
Чему вы научитесь
- Строить систему метрик для продукта
Узнаете, как выстроить рабочую систему для оценки продуктовых и маркетинговых метрик. Освоите сервисы аналитики сайтов и мобильных приложений.
- Обрабатывать и хранить данные
Научитесь анализировать данные с помощью Python и R, освоите SQL для решения продуктовых задач. Сможете создавать систему сбора, хранения и анализа информации.
- Создавать систему сквозной аналитики
Узнаете, как объединять данные из разных маркетинговых систем. Сможете собирать информацию о клиентах, заказах и товарах в единую инфраструктуру.
- Проводить исследования клиентского опыта
Узнаете, как сегментировать пользователей и анализировать путь клиента. Научитесь строить CJM, проводить глубинные интервью, фокус-группы и количественные исследования.
- Проверять гипотезы
Научитесь проводить A/B-тесты с помощью Google Optimize. Сможете интерпретировать результаты и находить важные инсайты, которые помогут развивать продукт.
- Визуализировать данные
Научитесь строить графики и создавать интерактивные дашборды в системе аналитики Tableau. Сможете наглядно представлять данные и готовить отчёты для руководства.
Помогаем построить карьеру мечты
Вас ждёт индивидуальная карьерная консультация, помощь в оформлении резюме и портфолио. На основе ваших пожеланий подберём подходящие вакансии, подготовим к собеседованию и сделаем всё, чтобы вы получили оффер.
За 2021 год мы трудоустроили более 1000 студентов на работу по новой профессии
Учитесь сейчас, платите потом!
Расходы за первые 3 месяца обучения берёт на себя Skillbox. В это время вы посещаете лекции и воркшопы, прокачиваете навыки, находите себе работу и начинаете зарабатывать.
Программа
Вас ждут онлайн-лекции и практические задания на основе реальных кейсов.
- 81 тематический модуль
- 507 онлайн-уроков
Основные курсы
- Веб-аналитик с нуля до Junior
Научитесь работать с основными системами веб-аналитики на продвинутом уровне, собирать данные и проводить A/B-тесты. Узнаете, как анализировать поведение пользователей, эффективность сайта и трафика. Сможете строить систему метрик для продукта и повышать отдачу от рекламы.
- Введение в веб-аналитику.
- Отчеты, метрики и навыки веб-аналитика.
- Google Tag Manager.
- Google Analytics.
- Яндекс.Метрика.
- Анализ эффективности рекламных каналов.
- Подключение рекламных кабинетов.
- Основы A/B-тестирования.
- Веб-аналитик в команде.
- Бонус-модуль. Куда дальше развиваться в аналитике.
- Продуктовая аналитика
Научитесь проводить продуктовую аналитику: обрабатывать данные, исследовать взаимодействие пользователей с продуктом, интерпретировать собранную информацию. Сможете использовать полученные результаты, чтобы решать задачи бизнеса.
- Введение в курс
- Продукт глазами аналитика
- Работа с задачами
- Глубина погружения пользователей в продукт
- Профили использования продукта
- Когортный анализ
- А/B-тесты. Обработка данных
- Ограничения и сложные кейсы А/B-тестирования
- Метрики и методы анализа удержания пользователей в продукте. Retention. Survival curves
- Предиктивная аналитика
- Сведение и интерпретация результатов аналитики
- Представление результатов аналитики
- Карьерный путь в продуктовой аналитике
- Аналитик мобильных приложений
Узнаете, как собирать данные о поведении пользователей мобильных приложений. Научитесь оценивать эффективность рекламных каналов, отслеживать выручку и привлекать аудиторию. Настроите аналитику на реальном приложении, улучшите показатели монетизации и конверсии.
- Введение в мобильную аналитику.
- Отчёты, метрики и навыки в мобильной аналитике.
- Firebase: внедрение.
- Google Tag Manager для мобильных приложений.
- Google Analytics для мобильных приложений.
- AppMetriсa.
- Анализ эффективности рекламных каналов.
- Подключение рекламных кабинетов.
- Настраиваем Adjust.
- Настраиваем Adjust: ретаргетинг и дополнительные отчёты.
- Amplitude: основные отчёты.
- Настраиваем Amplitude.
- Подведение итогов.
- Основы и практика Business Intelligence
Узнаете, как создавать хранилища данных в Linux и проектировать базы данных на языке SQL. Освоите Python для аналитики и научитесь работать с таблицами на продвинутом уровне. Сможете решать бизнес-задачи с помощью аналитики, чистить данные, правильно их хранить и визуализировать.
- Фундамент хранилища данных.
- Создаём первую базу данных.
- Скрипты для анализа данных.
- Python: минимум для начала работы.
- Python: как создавать таблицы.
- Python: чистим данные перед анализом.
- Python: как показать изменения во времени.
- Python: продвинутый уровень построения таблиц.
- Методы сбора внешних данных.
- Наполнение хранилища данными.
- Аналитика и бизнес-задачи.
- Tableau: основы интерфейса.
- Tableau: базовые отчёты.
- Сквозная аналитика
Научитесь объединять данные из разных систем в единую инфраструктуру, в которой хранится вся информация о клиенте, заказе и товаре. Узнаете, как решать задачи бизнес-юнитов с помощью языка R и хранилища данных. Сможете находить инсайты для развития продуктов.
- Вводный блок
- Аналитика товарного ассортимента
- Аналитика клиентской базы
- Доставка и последняя миля
- Пользовательский опыт
- Retention-marketing
- Поп-папы и рекомендательные системы
- Аналитика сайта и мобильных приложений
- Call-tracking
- Рекламные расходы
- Оценка периода
- P&L
Бонусный курс
- CX-исследования
Освоите разные методики исследований, которые помогут оценить опыт пользователя. Научитесь проводить качественные и количественные исследования, составлять профили пользователей, сегментировать аудиторию и строить Customer Journey Map. Поймёте, чем живёт ваша аудитория и как дать ей то, чего она хочет.
- Введение в исследования клиентского опыта.
- Исследовательский подход и выбор методов.
- Качественные методы: глубинное интервью и фокус-группы.
- Текстовая аналитика.
- Количественные исследования.
- Customer profiling, segmentation personas development.
- Customer Journey Map.
- Юзабилити-тесты.
- Customer satisfaction.
- AI in CX research.
- Фреймворк программы СХ исследований.
- Кросс-культурные факторы в исследованиях.
- Исследование уникальных торговых предложений.
- Анализ поведения пользователей на сайте.
- Как сформулировать гипотезы по данным веб-аналитики.
- Проведение А/В-теста.
- Способы сбора и обработки данных.
- Составление дорожной карты изменений.
Дипломные проекты
- Веб-аналитика для сайта компании
Вы опишете бизнес-модель компании и составите карту KPI для бизнеса и сайта. Настроите базовые системы веб-аналитики. Найдёте слабые места воронки на сайте и научитесь их устранять.
- Кейс интернет-магазина
Вы получите симуляцию данных о работе приложения интернет-магазина. Обработаете эти данные и проанализируете поведение пользователей. Интерпретируете результаты и поймёте, как повысить эффективность приложения и получить больше лидов.
- Аналитика для мобильного приложения
Вы создадите проект мобильного приложения в Android-studio и подключите его к аналитическим системам AppMetrica, Adjust, Amplitude.
- Хранилище данных
Вы создадите инфраструктуру хранилища данных (data warehouse) и объедините в нём данные из аналитических и рекламных систем.
- Customer Journey Map
Вы исследуете пользовательские сценарии продукта. Предложите решения по повышению конверсии и улучшению пользовательского опыта. Разработаете карту поведения пользователей и дорожную карту продукта.
Ваше резюме после обучения
- Должность Продуктовый аналитик
- Зарплата от: 120 000 ₽
Профессиональные навыки:
- Веб-аналитика в Google Analytics, Google Tag Manager и Яндекс.Метрике
- Сквозная аналитика и построение консолидированной отчётности
- Настройка динамического ремаркетинга в Google Merchant Center
- Аналитика данных на языках Python и R
- Анализ поведения пользователей на сайте и в мобильном приложении
- Оценка эффективности рекламных кампаний, маркетинговых каналов и инструментов
- Проведение A/B-тестов, глубинных интервью, фокус-групп и количественных исследований
- Построение баз данных на SQL, хранение и обработка данных
- Мобильная аналитика в Firebase, AppMetrica, Adjust, Amplitude
- Настройка коллтрекинга
- Построение Customer Journey Map
- Сегментация, профилирование и глубокий анализ целевой аудитории
Диплом Skillbox
Подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.
Научитесь анализировать метрики, чтобы быстро понять, как улучшить любой продукт. Узнаете, как проводить A/B-тестирование, находить аномалии в данных и визуализировать результаты для заказчика. Сможете начать карьеру в востребованной сфере.
- Итоговый проект в конце курса
- Опытные спикеры из Rutube, SberDevices, «Тинькофф Банка», «МТС Банка»
- Ключевые инструменты аналитики Power BI, Python, SQL, AppMetrica, «Яндекс.Метрика» и другие
- Подборка инструментов-аналогов для работы в условиях импортозамещения.
Кому подойдёт этот курс:
- Начинающим продуктовым аналитикам
Освоите базовые инструменты. Научитесь проверять продуктовые гипотезы, находить инсайты и визуализировать данные. Соберёте портфолио и начнёте зарабатывать. - Junior-продакт-менеджерам
Поймёте, как устроена продуктовая аналитика. Научитесь ставить задачи аналитикам так, чтобы получить ожидаемый результат. Сможете принимать бизнес-решения на основе данных. - Специалистам из сферы маркетинга, финансов и IT
Освоите аналитические инструменты и научитесь развивать продукты в команде. Получите востребованную профессию и сможете перейти в другую сферу. - Руководителям и предпринимателям
Поймёте, какую пользу для бизнеса приносит работа с данными. Научитесь настраивать процессы аналитики, сможете нанять квалифицированного специалиста и улучшить показатели бизнеса.
Чему вы научитесь:
- Проводить исследование продукта
Освоите инструменты продуктовой аналитики, включая удобные библиотеки на Python, и научитесь строить систему метрик продукта. Научитесь строить модели продукта и понимать его внутренние механизмы.
- Анализировать поведение пользователей
Поймёте, как пользователи взаимодействуют с продуктом, и научитесь предсказывать их поведение. Узнаете, как работает сегментация по поведению, и научитесь применять её на практике.
- Запускать A/B-тесты
Научитесь проводить исследования и оценивать их результаты. Разберёте сложные кейсы, поймёте, какие трудности возникают с A/B-тестами и как их решать.
- Решать задачи бизнеса
Поймёте роль продуктовой аналитики в компании, разберётесь в процессах работы над проектом и научитесь решать задачи бизнеса. Узнаете, как с помощью аналитики улучшить продукт и найти его слабые места и точки роста.
- Принимать решения на основе данных
Научитесь читать и интерпретировать результаты аналитики, находить в данных то, чего не видят другие. Сможете выявлять важные закономерности и делать выводы, чтобы принимать управленческие решения.
- Готовить отчёты для клиентов
Сможете быстро делать презентации и научитесь просто и понятно представлять результаты аналитики, чтобы ваша работа имела максимальный эффект и ценилась бизнесом.
Программа:
Вас ждут онлайн-лекции и практические задания, которые помогут погрузиться в продуктовую аналитику.
13 тематических модулей, 52 онлайн-урока.
- Введение в курс
Поймёте, как устроена программа обучения и какие задачи решает продуктовый аналитик.
- Продукт глазами аналитика
Узнаете, чем занимаются аналитики и какова их роль в компании. Поймёте, как аналитики оценивают, а пользователи воспринимают продукт.
- Работа с задачами
Освоите профессиональных подход к аналитике. Научитесь принимать и оценивать задачи, выбирать инструменты, источники данных, рассчитывать ресурсы и планировать рабочие процессы.
- Глубина погружения пользователей в продукт
Познакомитесь с моделями погружения пользователей в продукт. Узнаете, что такое воронки конверсии и как их строить с помощью инструментов аналитики, таблиц или Python.
- Профили использования продукта
Научитесь исследовать вовлечение пользователей в разные функции и возможности продукта. Освоите построение матрицы частот и переходов.
- Когортный анализ
Узнаете, что такое когорты и сегменты пользователей, научитесь их сравнивать между собой и искать инсайты.
- А/B-тесты. Обработка данных
Поймёте, для чего и как используют A/B-тесты. Научитесь работать с данными, применять статистические методы и бутстрэппинг.
- Ограничения и сложные кейсы А/B-тестирования
Познакомитесь с нетривиальными кейсами в работе с A/B-тестированием. Узнаете, какие возникают осложнения в тестах и как с ними справляться.
- Метрики и методы анализа удержания пользователей в продукте. Retention. Survival curves
Разберётесь в продуктовых метриках: конверсия средних чеков, CAC, LTV, Retention, MAU, DAU, прокси-метрики, опережающие и маркетинговые метрики — CPM, CPC, CPA, CPO, NPS.
- Предиктивная аналитика
Узнаете, что такое предиктивная аналитика и как можно предсказывать поведение пользователей, используя искусственный интеллект.
- Сведение и интерпретация результатов аналитики
Научитесь читать и перепроверять данные аналитики — и понимать, о чём они говорят. Сможете оценивать результаты исследований в контексте бизнес-задач и экономить время при сведении результатов.
- Представление результатов аналитики
Поймёте, как представлять результаты исследований, чтобы они были понятны тем, кто впервые видит данные. Научитесь использовать шаблоны презентации данных.
- Карьерный путь в продуктовой аналитике
Узнаете, где брать инсайты и вдохновение для работы. Поймёте, как развиваться в аналитике, находить кейсы, публиковать результаты и повышать свою ценность на рынке труда.
- Бонусные модули
- Введение в Python
- Библиотека NumPy. Часть 1
- Библиотека NumPy. Часть 2
- Библиотека pandas. Часть 1
- Библиотека pandas. Часть 2
- Дипломный проект. Кейс интернет-магазина
Вы получите симуляцию данных о работе приложения интернет-магазина. Затем обработаете данные, проведёте исследование и проанализируете поведение пользователей. Это нужно, чтобы повысить эффективность приложения и получить больше лидов.
Профессиональные навыки:
- Знание продуктовых метрик (Retention, MAU, DAU и прокси-метрики)
- Построение воронки с помощью Google Analytics, Яндекс.Метрики и таблиц
- Планирование и статистическая обработка результатов A/B-тестов
- Построение матриц частот вызова событий и переходов
- Продуктовая аналитика со знанием Python
- Анализ профилей использования приложений
- Когортный анализ
- Интерпретация и валидация результатов аналитики
- Поведенческая сегментация
- Предиктивная аналитика
- Подготовка отчётов и презентаций