15+ лучших курсов аналитика данных в 2024 году. Платные и бесплатные. Рейтинг, сравнение и стоимость обучения.

Стоимость: 129 900 ₽ или рассрочка на 24 месяца — 5 412 ₽ / мес
  • Станьте универсальным аналитиком и начните работать уже через полгода обучения
  • Изучите ключевые инструменты и соберите портфолио для демонстрации будущему работодателю
  • Формат обучения — Вебинары, воркшопы, гостевые лекции
  • Трудоустройство — Поможем найти работу после обучения
  • Диплом — О профессиональной переподготовке установленного образца

Аналитик данных проводит статистические тесты, чтобы решить бизнес-проблемы, на которые пока нет ответа. Он работает с разными инструментами анализа, не ограничиваясь готовыми решениями и системами. Знает языки программирования и формулирует гипотезы.

Курс поможет вам не только с нуля овладеть всеми важными для аналитика данных навыками, но и научит мыслить абстрактно, видеть за метриками и показателями смысл, находить взаимосвязи и строить гипотезы.

 

Как работает аналитик данных

  • Общается с представителями бизнеса и выявляет проблемные места компании
  • Собирает информацию и составляет гипотезы для улучшения определённых показателей
  • Готовит данные к проведению анализа: сортирует, фильтрует и делает выборку, находит закономерности
  • Визуализирует данные и предлагает решения для развития проекта или бизнеса

 

На основе данных, предоставленных Data Analyst, компания может принимать верные бизнес-решения

Поможем найти работу после обучения

 

Кому будет полезен этот курс

Идеально подойдёт тем, кто погружается в аналитику с нуля

Всем, кто хочет работать с данными

Узнаете, как проводить исследования, анализировать данные и делать наглядные отчёты. В короткие сроки получите специализацию и сможете начать карьеру в аналитике на позиции junior.

Аналитикам без навыков программирования

Вы подтянете знания в работе с аналитикой, изучите основы программирования на Python или R, научитесь работать с базами данных и Big Data. Расширите компетенции и сможете перейти на middle-уровень.

Разработчикам, которые хотят сменить профиль

Поймёте, как применить свои знания в программировании для решения бизнес-задач. Изучите инструменты для анализа, сборки и презентации данных заказчику — и станете более востребованным специалистом.

 

Аналитик — специалист, который занимается обработкой данных и составлением на их основе прогнозов, стратегий, планов и рекомендаций

 

Чему вы научитесь на курсе

Работать с SQL

Научитесь писать запросы, работать с данными в базе без переноса в таблицы, загружать данные и сохранять историю, работать с разными форматами файлов

Использовать Python или R

Научитесь получать данные из внешних источников, обосновывать выводы, работать с массивами данных и находить закономерности в цифрах

Применять data-driven подход

Проводить A/B-тесты и определять, что приносит результат в исследуемой области, основываясь на данных, а не на интуиции

Работать с Big Data

Освоите актуальные инструменты анализа данных и получите явное конкурентное преимущество — крупнейшие компании работают с большими данными

Визуализировать данные для разной аудитории

Научитесь строить графики и диаграммы: от простых до интерактивных, сможете создавать визуализации под любой тип данных и рассказывать историю, основываясь на них

Развивать эмоциональный интеллект

Узнаете, как принимать эмоции и управлять ими. Сможете лучше понимать окружающих и строить деловые отношения. Усилите свою конкурентоспособность

 

Программа курса

1 модуль. Погружение

В первом модуле вы разберётесь, что такое аналитическое мышление, и узнаете, откуда берутся данные. Научитесь определять ключевые продуктовые метрики и создавать дашборды.

 

Аналитическое мышление

Научитесь думать как аналитик и формулировать гипотезы для проверки. Поймёте, что аналитика строится вокруг данных. Познакомитесь с базовым инструментом аналитика и сможете проводить в нём простой анализ данных.

  • 16 часов теории
  • 20 часов практики
  • Что такое аналитическое мышление
  • Введение в Google-таблицы
  • Продвинутые Google-таблицы
  • Основы статистики
  • Откуда берутся данные
  • Продвинутая визуализация данных
  • Python как инструмент анализа данных
  • Машинное обучение для жизни

Основы визуализации данных

Поймёте, как создавать наглядные интерактивные дашборды для анализа бизнес-метрик в онлайн-режиме. Научитесь определять ключевые продуктовые метрики и создавать дашборды.

  • 10 часов теории
  • 20 часов практики
  • Зачем нужна визуализация данных
  • Инструменты, источники и предподготовка данных
  • Основы статистики и способы сравнения метрик
  • Связи, потоки, процессы и карты
  • Как рассказать историю с помощью данных

Метрики, гипотезы, точки роста

Научитесь работать в команде. Узнаете, кто является заказчиком аналитики в компании и как работать с разными типами заказчиков. Получите базовые знания об иерархии метрик, которые позволят вам говорить на одном языке с коллегами, выдвигать рабочие гипотезы и строить понятную отчётность.

  • 8 часов теории
  • 9 часов практики
  • Понимание целей бизнеса
  • Финансовые метрики
  • Маркетинговые метрики и метрики продукта
  • Иерархия метрик
  • Сбор требований и разработка отчётности
  • Формулирование гипотез. Поиск точек роста
  • Дизайн тестов, проведение и анализ. Построение простых моделей
  • Оптимизация отчётности

2 модуль. Получение данных и работа с ними

Узнаете, как писать SQL-запросы, чтобы получать данные и подготавливать их к последующему анализу. Научитесь технологиям работы с большими данными и поймёте методы их монетизации.

 

SQL и получение данных

Научитесь писать SQL-запросы, чтобы получать данные из базы данных — и не тратить время разработчиков или администраторов на поиск нужного разреза информации. Узнаете, как создавать новые таблицы сразу в базе без выгрузки данных в Excel — это позволит делать отчеты быстрее. Научитесь загружать данные в базу и самостоятельно развёртывать базу данных PostgreSQL, чтобы хранить данные в тех разрезах, которые нужны аналитикам.

  • 20 часов теории
  • 30 часов практики
  • Введение в инфраструктуру
  • Основы баз данных
  • Основы SQL
  • Углубление в SQL
  • Работа с PostgreSQL
  • Работа с MongoDB

Аналитика больших данных

Разберётесь в методах построения аналитики в компании. Научитесь переходить от мониторинга к прогнозированию, применяя простые скрипты Python и PySpark, чтобы не тратить средства на внедрение сложных промышленных комплексов. Сможете определять, когда и каких данных не хватает, и собирать недостающие.

  • 22 часа теории
  • 42 часа практики
  • Что такое большие данные
  • Монетизация больших данных
  • Характеристики и источники данных
  • Культура сбора данных
  • Основы реализации проектов больших данных
  • Основные характеристики больших данных и виды анализа данных. Продвинутые методы анализа больших данных
  • Технологии работы с большими данными
  • NoSQL-подход
  • MapReduce-подход
  • Введение в Hadoop

3 модуль. Автоматизация процессов 

Научитесь получать данные из внешних источников, обосновывать выводы, работать с массивами данных и находить закономерности в цифрах. Узнаете, как находить точки роста в данных, оформлять их в гипотезы и оценивать их эффективность.

 

Анализ данных на R

Язык на выбор

Научитесь импортировать данные в R, познакомимся с фреймами данных, освоите базовые операции (просмотр, обращение к данным, преобразование, соединение, фильтрация). Разберёте этапы анализа данных. Узнаете, какой workflow есть при анализе данных и какие действия нужно выполнить.

  • 20 часов теории
  • 28 часов практики
  • Обзор языка R, базовые принципы программирования
  • Основы R, базовые структуры данных и работа с ними
  • Работа с наборами данных. Разные источники данных и подключение к ним
  • Визуализация в R — исследование данных с помощью диаграмм
  • Этапы анализа данных. Подготовка и очистка данных
  • Основы моделирования в R
  • Предоставление результатов анализа. Продвинутая визуализация
  • Разработка аналитических веб-приложений в R (Shiny)

Python

Язык на выбор

Вы научитесь пользоваться базовыми инструментами и подходами в Python, чтобы начать работать с данными. Повторите основы линейной алгебры, теории множеств, методов математической оптимизации, описательной статистики, статистического анализа данных, а также научитесь реализовать это на языке Python.

  • 68 часов теории
  • 80 часов практики
  • Введение в Git
  • Основы Python. Управляющие конструкции и коллекции
  • Функции
  • Работа с файловой системой и модули
  • Регулярные выражения и основы синтаксического разбора
  • Исключения и обработка ошибок
  • Понятие класса
  • Библиотека NumPy. Вычислительные задачи
  • Библиотека pandas
  • Функции и работа с данными
  • Основы парсинга и работы с API
  • Продвинутый pandas
  • Библиотека Matplotlib & Seaborn. Визуализация данных
  • Базовые понятия статистики
  • Визуализация
  • Случайные события. Случайные величины
  • Корреляция и корреляционный анализ
  • Логистическая регрессия и дискриминационный анализ
  • Доверительные интервалы. Статистическая проверка гипотез для несвязанных выборок
  • Статистическая проверка гипотез для связанных выборок. A/B-тесты и как их проводить

A/B-тестирование

Научитесь самостоятельно проводить A/B-тестирования, не прибегая к помощи агентств и сторонних специалистов.

  • 24 часа теории
  • 28 часов практики
  • Data-driven процессы и роль A/B-тестирования
  • Основы A/B-тестирования
  • Основы распределения и статистики
  • Выбираем группы и разделяем на A/B
  • Инструменты для А/B-тестирования
  • Статистика и А/B-сплиттинг
  • Анализ результатов
  • Возможные ошибки и как их избежать
  • Анализ результатов А/B-тестов

4 модуль. Гибкие навыки, или Soft skills 

Сочетание хард- и софт-скиллов поможет вам быстрее расти по карьерной лестнице и добиваться больших результатов. Эта часть курса про создание здоровой атмосферы в коллективе и грамотной коммуникации в бизнесе. 

  • Эффективные коммуникации и эмоциональный интеллект
  • Переговоры
  • Публичные выступления
  • Программа трудоустройства

 

В рамках дипломного проекта вы примените полученные навыки на персональном проекте по анализу данных. Это может быть анализ данных по продажам, прогнозная аналитика влияния бизнес-действий на ключевые показатели эффективности или написание алгоритма распределения товарных запасов. 

 

У вас есть три занятия, чтобы попробовать. Если передумаете учиться, скажите — и мы вернём вам всю сумму.

 

Ключевые навыки

  • Получение данных с помощью языка запросов SQL
  • Очистка и трансформация данных с помощью Python или R
  • Сбор и анализ требований заказчиков к отчётности
  • Применение в работе ключевых математических методов и основ статистики
  • Прогнозирование событий на основе данных
  • Анализ результатов кампаний, исследований и тестирования продуктовых гипотез
  • Способность создавать аналитические решения и представлять их бизнесу

 

Инструменты, которые вы освоите

  • Google Analytics

Сервис для создания детальной статистики посетителей сайтов.

  • Яндекс.Метрика

Сервис компании Яндекс, предназначенный для оценки посещаемости сайтов и анализа поведения пользователей.

  • Optimizely

Платформа для проведения A/B-тестирований.

  • Amplitude

Платформа аналитики, которая призвана показать «поведенческий слой» пользовательских данных.

  • Mixpanel

Система для аналитики и анализа поведения пользователей.

  • R

Среда вычислений, разработанная учёными для обработки данных, математического моделирования и работы с графикой, а также язык программирования.

  • R-Studio

Свободная среда разработки программного обеспечения с открытым исходным кодом для языка программирования R.

  • SQL

Язык программирования, применяемый для создания, модификации и управления данными в реляционной базе данных, управляемой соответствующей системой управления базами данных.

  • PostgreSQL

Свободная объектно-реляционная система управления базами данных.

  • NumPy

Библиотека с открытым исходным кодом для языка программирования Python.

  • Hadoop

Набор утилит, библиотек и фреймворк для разработки и выполнения распределённых программ, работающих на кластерах из сотен и тысяч узлов.

  • Python

Язык программирования общего назначения, ориентированный на повышение производительности разработчика и читаемости кода.

Стоимость: цену уточняйте на сайте.

Научитесь анализировать данные с помощью сервисов аналитики и BI-инструментов, освоите Python и SQL. Сможете строить прогнозы на основе данных и помогать бизнесу принимать решения.

  • Обучение на практике SQL, Python, Power BI
  • Онлайн в удобное время
  • Преподаватели- практики с опытом работы от 10 лет
  • Доступ к курсам навсегда

Получите профессию в перспективной сфере

  • 220+ компаний

ищут аналитиков. Среди них: Яндекс, Ozon, Сбербанк, ВТБ

  • 130 000 рублей

зарплата специалиста с опытом работы 1–3 года

Кому подойдёт этот курс

  • Студенты технических вузов

Узнаете, как проводить исследования, анализировать данные и делать наглядные отчёты. В короткие сроки получите специализацию и сможете начать карьеру в аналитике на позиции Junior.

  • Руководители и владельцы бизнеса

Взглянете по-новому на свой продукт, изучите его сильные и слабые стороны. Узнаете, как делать прогнозы для бизнеса, развивать продукт и решать текущие проблемы на основе данных аналитики.

  • Разработчики, которые хотят сменить профиль

Поймёте, как применить свои знания в программировании для решения бизнес-задач. Изучите инструменты для анализа, сборки и презентации данных заказчику — и станете более востребованным специалистом.

  • Бизнес-аналитики

Вы подтянете знания в работе с аналитикой, изучите основы программирования на Python, научитесь работать с базами данных и Power BI. Расширите компетенции и станете эффективнее решать текущие задачи.

Чему вы научитесь

  • Проводить исследования и делать точные выводы

Изучите математическую основу анализа, научитесь работать с массивами данных и находить закономерности в цифрах.

  • Использовать программирование в аналитике

Освоите основы программирования на Python для решения базовых бизнес-задач. Научитесь собирать базы данных на языке SQL и управлять ими.

  • Строить гипотезы и оценивать перспективы бизнес-решений

Узнаете, какие метрики эффективности использует бизнес, поймёте, как их собирать, читать, строить прогнозы и находить рабочие идеи.

  • Работать с сервисами аналитики и дашбордами

Научитесь работать с «Яндекс.Метрикой» и Google Analytics и собирать данные в одно окно для быстрого доступа к отчёту.

  • Делать развёрнутые аналитические отчёты

Поймёте, как пользоваться инструментами для визуализации данных, таблицами Google и Excel — и формировать отчёты для клиентов.

  • Работать с заказчиками аналитики

Научитесь обрабатывать различные типы аналитических запросов от бизнеса, презентовать отчёты и обрабатывать комментарии.

Программа

Вас ждут онлайн-лекции и практические задания с разным уровнем сложности. Этих знаний хватит, чтобы устроиться в компанию на junior-позицию.

  • 23 тематических модулей
  • 190 онлайн-уроков

Часть 1. Введение. Excel, Google-таблицы

1.     Введение

  1. Общая информация о курсе
  2. Источники данных и инструменты для анализа

2.     Excel

  1. Введение. Интерфейс Excel. Книги и листы
  2. Анализ таблиц. Печать таблиц
  3. Сводные таблицы
  4. Вычисления и формулы. Умные таблицы
  5. Функции подсчёта и суммирования. Статистические функции. Функции округления
  6. Логические функции

3.     Google Таблицы

  1. Основы, интерфейс Google Таблиц
  2. Сводные таблицы: основы

Часть 2. Python, библиотеки NumPy и Pandas

1.     Python

  1. Python, введение
  2. Основы
  3. Операторы, выражения
  4. Условный оператор if: ветвления
  5. Условный оператор if: продолжение
  6. Цикл while
  7. For: циклы со счётчиком. Часть 1
  8. For: циклы со счётчиком. Часть 2
  9. Цикл for: работа со строками
  10. Вложенные циклы
  11. Цикл for: продолжение работы со списками
  12. Функции
  13. Float
  14. Установка и настройка IDE
  15. Базовые коллекции: списки
  16. Методы для работы со списками
  17. Представление списков

2.     Библиотеки

  1. Библиотека NumPy. Часть 1
  2. Библиотека NumPy. Часть 2
  3. Библиотека Pandas. Часть 1
  4. Библиотека Pandas. Часть 2

Часть 3. SQL, чтение и запись данных, Power BI

1.     SQL

  1. Основы SQL

2.     Чтение и запись данных

  1. Чтение и запись данных. Часть 1
  2. Чтение и запись данных. Часть 2

3.     Статистика

  1. Введение в статистику
  2. Знакомство с Big Data
  3. Основные метрики и системы аналитики (Я.Метрика и Google Analytics)
  4. Загрузка данных в Power BI
  5. Соединение данных из разных таблиц и ресурсов

Дипломный проект

1.     Составите модель распространения пандемии

  1. Выявите людей в зоне риска, учтёте их пол, возраст, перемещение по городу. Построите наглядные графики и таблицы для анализа.

Ваше резюме после обучения

  • Должность Junior — аналитик данных
  • Зарплата от: 60 000 ₽

Профессиональные навыки:

  • Знание основ математической статистики
  • Работа с Excel и Google Таблицами
  • Основы программирования на Python
  • Работа с Power BI
  • Создание аналитических отчётов
  • Знание Google Analytics и «Яндекс.Метрики»
  • Работа с базами данных на SQL
  • Создание дашбордов

Диплом Skillbox

Подтвердит, что вы прошли курс, и станет дополнительным аргументом при устройстве на работу.

Аналитик данных извлекает из данных смысл: структурирует их, формулирует и проверяет гипотезы, находит закономерности и делает выводы. Его работа помогает принимать решения в бизнесе, управлении и науке. Мы хотим научить вас пользоваться основными инструментами для получения профессии: Python и его библиотеки, Jupyter Notebook, SQL.

Программа обучения

1

Основы Python и анализа данных: бесплатный вводный курс

16 часов

Процесс и стадии работы аналитика: основные термины, задачи и инструменты анализа данных. Подготовка данных для анализа. Знакомство с языком программирования Python, аналитической библиотекой Pandas и средой программирования Jupyter.

+ 1 проект в портфолио

2

Введение в профессию «Аналитик данных»

4 часа

Знакомство с профессией аналитика. Обзор областей, в которых может работать аналитик. Представление разных видов аналитики. Организационная часть процесса обучения.

3

Предобработка данных

40 часов

Чистые и готовые к анализу данные — первый шаг к решению аналитической задачи. Разбираем инструменты для компенсации недостатков данных.

+ 1 проект в портфолио

4

Исследовательский анализ данных

40 часов

Предварительный поиск закономерностей в данных даёт возможность сформулировать первые гипотезы для анализа, а также избежать странных ошибок. Учимся использовать средства визуализации для работы с данными.

+ 1 проект в портфолио

5

Статистический анализ данных

40 часов

В ходе работы с продуктом возникает масса гипотез, которые можно проверить понятными статистическими методами. Изучаем основы статистики и теории вероятностей для решения бизнес-задач.

+ 1 проект в портфолио

6

Сборный Проект — 1

20 часов

Подготовка данных для анализа. Предварительное исследование датасета. Формулирование и проверка гипотез.

+ 1 проект в портфолио

1 неделя каникул после курса

7

Сбор и хранение данных

40 часов

Как устроены базы данных, как извлекать данные из них, делая запросы на языке SQL. Добыча данных в интернете.

+ 1 проект в портфолио

8

Анализ бизнес-показателей

40 часов

Ещё ближе к бизнесу — разбираем подробно, что такое метрики и основные инструменты: когортный анализ, воронка продаж и unit-экономика.

+ 1 проект в портфолио

9

Принятие решений в бизнесе на основе данных

40 часов

A/B-тестирование: в каких случаях его использовать; проектирование, формирование выборки, получение результатов и их валидация.

+ 1 проект в портфолио

10

Как рассказать историю с помощью данных

40 часов

Как правильно презентовать результаты своего исследования, оперируя графиками, важнейшими цифрами и их правильной интерпретацией.

+ 1 проект в портфолио

11

Сборный проект — 2

20 часов

Получение данных из базы. Предобработка и обзор датасета. Формулирование гипотез с учётом специфики бизнеса. Проверка гипотез и подготовка выводов в формате аналитического отчёта.

+ 1 проект в портфолио

1 неделя каникул после курса

12

Автоматизация

40 часов

Автоматизация процессов анализа данных. Превращение рутинных и постоянных задач в скрипты. Создание дашбордов для разных аудиторий и нужд компании.

+ 1 проект в портфолио

13

Прогнозы и предсказания

40 часов

Основы машинного обучения, разбор задачи предсказания оттока пользователей.

+ 1 проект в портфолио

14

Выпускной проект

40 часов

Самостоятельное решение аналитической задачи на выбор студента, со всеми стадиями анализа данных.

+ 1 проект в портфолио

Преимущества выбора курсов в РоманСеменцов.ру

1. Агрегатор онлайн-курсов


2. Рейтинги онлайн-школ

  • ТОП школ по любым направлениям
  • Дата начала: 2023-01-01
  • Дата окончания: 2023-12-31

3. Актуальное обучение

  • Выбирайте лучшие курсы по отзывам реальных учеников
  • Дата начала: 2023-01-01
  • Дата окончания: 2023-12-31
Онлайн-курсы доступ в любом городе России и СНГ, включая: Нефтеюганск, Курск, Воронеж, Ярославль, Владивосток, Балашиха, Ангарск, Комсомольск-на-Амуре, Орехово-Зуево, Златоуст, Челябинск, Улан-Удэ, Великий Новгород, Миасс, Уссурийск, Обнинск, Астрахань, Севастополь, Тольятти, Братск, Минск, Чебоксары, Волгодонск, Пенза, Назрань, Ижевск, Новороссийск, Самара, Белгород, Иркутск, Череповец, Казань, Домодедово, Мытищи, Курган, Одинцово, Кострома, Стерлитамак, Благовещенск, Мурманск, Краснодар, Новосибирск, Калуга, Первоуральск, Сыктывкар, Омск, Москва, Тверь, Находка, Псков, Королёв, Хасавюрт, Коломна, Орёл, Серпухов, Казахстан, Пятигорск, Электросталь, Магнитогорск, Дзержинск, Нефтекамск, Балаково, Орск, Йошкар-Ола, Барнаул, Красноярск, Якутск, Каменск-Уральский, Нижний Тагил, Сызрань, Сургут, Дербент, Тюмень, Армавир, Петропавловск-Камчатский, Калининград, Набережные Челны, Подольск, Уфа, Новочебоксарск, Нижнекамск, Томск, Екатеринбург, Таганрог, Люберцы, Нижний Новгород, Черкесск, Новый Уренгой, Новокузнецк, Копейск, Раменское, Каспийск, Беларусь, Оренбург, Махачкала, Рязань, Новомосковск, Майкоп, Южно-Сахалинск, Рубцовск, Грозный, Саратов, Архангельск, Кемерово, Шахты, Тамбов, Санкт-Петербург, Ставрополь, Вологда, Энгельс, Северодвинск, Норильск, Тула, Батайск, Прокопьевск, Брянск, Владикавказ, Старый Оскол, Красногорск, Невинномысск, Кисловодск, Сочи, Владимир, Бийск, Ульяновск, Хабаровск, Кызыл, Киров, Симферополь, Чита, Иваново, Ковров, Нижневартовск, Керчь, Долгопрудный, Щёлково, Пермь, Саранск, Смоленск, Салават, Волгоград, Березники, Абакан, Ростов-на-Дону, Альметьевск, Рыбинск, Волжский, Новочеркасск, Липецк, Химки, Петрозаводск

Автор статьи. Ответственный за актуальный контент, текст и редактуру сайта. Эксперт по выбору профессии, курсов и профессий с 2016 года. Делюсь личным практическим опытом.

Оцените автора
Блог Романа Семенцова
Добавить комментарий